Retrospective: 30 Years of Cybersecurity R&D

Stephen Smalley
NSA Laboratory for Advanced Cybersecurity Research (LACR)
April 3, 2024
All modern Android devices use a security framework first developed by NSA’s Laboratory for Advanced Cybersecurity Research (LACR).
 • And so do many Linux-based systems.

All iOS devices run a security framework whose development was originally sponsored by LACR.
 • And so do macOS and FreeBSD-based systems.

Windows Virtualization-based Security embodies multiple concepts from a Secure Virtual Platform architecture first created by LACR.

How did we get there?
About the Laboratory for Advanced Cybersecurity Research (LACR)

- Originally created as a dedicated research organization in 1990.
 - Although NSA was doing computer security research decades before.
- R&D in support of NSA’s Cybersecurity mission to protect National Security Information and Systems.
- First at NSA to create and release open source software – SELinux, 2000.
- Long history of open source contribution and collaboration.
 - Linux, Xen, FreeBSD, Darwin, OpenSolaris, Android, Zephyr
- With both direct and indirect impacts on real systems, both open source and proprietary.
Thirty Years Ago…

- I was a relatively new hire into the OS security research team in LACR.
- Linux 1.0 was just released (Linus: “A better UNIX than Windows NT”).
- Google didn’t exist (and wasn’t a verb!).
- No mainstream operating system supported Mandatory Access Control.
- The Trusted Platform Module (TPM) hadn’t even been specified yet.
- Cloud computing (as we know it today) didn’t exist.
- Hardware virtualization wasn’t yet supported by commodity processors.
- Smartphones didn’t exist (unless you count the IBM Simon!).
- Trusted Execution Environments were not even a concept.
- AI/ML was…slightly less advanced.
In the beginning...

• The 1990s: “Peace, Prosperity and the Internet” (history.com)
• Synergy: A Distributed, Trusted, Microkernel-based Operating System, 1993
 • Distributed Trusted Mach (DTMach)
 • The Distributed Trusted Operating System (DTOS)
 • The Flux Advanced Security Kernel (Flask)
• The start of recurring themes for our research
 • Microkernels for security and security for microkernels
 • Flexible security/Mandatory Access Control (MAC): no one size fits all
The trials and tribulations of research prototypes & technology transfer

National Security Council recommendation

Our Goals
 • Demonstrate viability of security architecture in a real OS
 • Provide an open reference implementation
 • Provide a long-term research platform (still going strong after 23 years!)

Linux as an emerging platform

Developing the code was the easy part! Initial prototype created in 1999.

First public release: December 22, 2000, based on Linux 2.2.
Growing Up

- A community quickly coalesces around SELinux.
- Multiple rewrites to make it acceptable: Third time’s a charm!
- Linux 2.6.0 ("The beaver is out of detox") released Dec 2003.
 - 20 years of SELinux in the mainline Linux kernel!
- Integration into a GNU/Linux distribution
 - 2004: Fedora Core 3; 20 years of SELinux in Fedora!
- Extending upward into middleware and applications.
Branching Out

• In parallel with our work to mature and extend SELinux.
• Co-sponsored flexible MAC development for FreeBSD and Darwin.
 • Adopted into FreeBSD (experimental in 2003, default in 2009).
 • Leveraged earlier DTMach/DTOS microkernel R&D for Darwin.
 • Adopted into macOS (2007) and iOS (2008) for app sandboxing.
 • RIP OpenSolaris 2010
Going Virtual

• **NetTop**, starting circa 2000
 • VMWare/SELinux hybrid to support multiple security level connectivity from a single desktop
 • *NetTop Eight Years Later*, The Next Wave, 2008

• **Secure Virtual Platform** (SVP), starting early 2000s
 • Explored emerging hardware virtualization and trusted computing paradigms to address residual risks
 • Applied these technologies to construct a secure system architecture
 • *Secure Virtual Platform Research*, OpenXT Summit 2016
Hypervisors: Microkernels Revisited

• Opportunity to revisit microkernel-like OS architecture for security
 • Isolate untrusted and security-critical components
 • Enforce assured pipelines, e.g. inline VPN or DAR

• Xen chosen as a research platform
 • “type 1” hypervisor, community, adoption, open source

• Securing virtualization
 • Hypervisor MAC – XSM/Flask first merged 2007, full support in 2013
 • Dom0 disaggregation – *Breaking up is hard to do: Security and functionality in a commodity hypervisor*, SOSP’2011
 • Secure IVC – OpenXT v4v (2011/14), Xen Argo (2019)
Trust but Verify

- **Recognized** Trusted Platform Module (TPM) as a key enabling technology
 - Verifiable, trustworthy report of loaded software and configuration
 - Protection of long term secrets from leakage and misuse
 - Resilient even in the face of complete software compromise
- But also **recognized** the remaining gaps and challenges
 - Scalability, flexibility, dynamism, chain of trust
 - **Virtualization** support
 - Need for runtime integrity measurement
 - Need for **flexible, layered** attestations
Runtime Integrity: A Missing Link

• **Invented** technique for measuring and appraising the integrity of running software: contextual inspection.

• Prototyped for:
 • Linux kernel ([Linux kernel integrity measurement using contextual inspection](#)), STC’2007)
 • Xen hypervisor ([STM/PE & XHIM](#), PSEC’2018)
 • Windows kernel

• Just now becoming generally available in commercial products.

• Zero Trust for operating systems / hypervisors
Finding a Place to Stand

• Need for hardware roots of trust for load-time and run-time integrity measurement
 • Dynamic Root of Trust for Measurement – TXT/SVM
 • SMI Transfer Monitor (STM)
• *Using the Intel STM for Protected Execution*, PSEC 2018
• *Implementing STM Support for Coreboot*, OSFC 2019
• SMM isolation and SMI de-privileging finally entering the *mainstream*
Flexible Attestation

• System architectures to support comprehensive, flexible load-time and runtime measurement.

• Flexible support for selective, policy-driven attestations.

• Protocols for attestation.

• Demonstrated in Maat open source framework for orchestrating flexible, layered attestations.
 • First described in Attestation: Evidence and Trust, ICICS’08
 • Open source release in 2022.
Going Mobile

• Enhancing mobile OS security: SE (for) Android
 • Open source release in 2012, adoption beginning in 2013
 • Security Enhanced Android: Bringing Flexible MAC to Android, 2013
 • A decade of SE for Android, running on > 3 billion active devices

• SVP for mobile devices: secure wireless laptop, smartphone virtualization
 • Influenced XenClient XT / OpenXT
 • Influenced Samsung’s Knox architecture
 • Laying a Secure Foundation for Mobile Devices, NDSS’13
The s in IoT stands for Security

- Spanning the gamut from Linux-based operating systems to Zephyr to Fuchsia
 - Yocto, Android Things, Zephyr, Fuchsia
 - Security in Zephyr and Fuchsia, Linux Security Summit 2018
- Adapting to microcontroller hardware
 - MPUs vs MMUs
 - TrustZone-M vs TrustZone
 - CHERI for microcontrollers
Shrink the TCB: Use a TEE

• Early R&D into using Arm TrustZone for mobile devices
 • Place to host TPM/MTM-like functionality, runtime integrity

• Intel SGX fundamentally changed the threat model - 2013
 • Opportunity to shrink Trusted Computing Base (TCB) to a portion of the application

• Trend toward VM-based Trusted Execution Environments (TEEs)
 • AMD SEV-SNP, Intel TDX, Arm Realms
 • With corresponding expansion of the TCB
Securing the Cloud

- Growing adoption and use of SELinux in cloud-focused Linux distributions
 - Bottlerocket Linux and Amazon Linux 2023
 - Azure Linux and Azure Boost

- The rise of confidential computing
 - Leveraging TEEs in the cloud
 - Enabling trustworthy AI/ML
The Persistent Relevance of the OS

• None of these technological advances have obviated the need for secure operating systems!
 - *The persistent relevance of the local operating system to global applications*, 7th ACM SIGOPS European workshop, 1996.

• And OS security is not a static field.
 - SELinux itself is constantly evolving to address emerging needs and technologies.
 - And perhaps might even be replaced someday (hint: eBPF).
 - SVP/VBS-like architectures are now being proposed for Linux.
Questions?

- Contact me: sdsmall@uwe.nsa.gov
- SELinux Project, https://github.com/SELinuxProject
- NSA LACR, https://nsa.gov/LACR