
STR 2024 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document Slide 1

DOCUMENT
RESTRICTIONS

© STR 2024 • See document restrictions below

ARBITER & UPSAT
(Assured Open Source:
Experience Report)
Howard Reubenstein -- howard.reubenstein@str.us
Greg Eakman – greg.eakman@str.us
7 May 2023
V2.3

Distribution Statement `A' (Approved for Public Release, Distribution Unlimited). The views, opinions,
and/or findings expressed are those of the author(s) and should not be interpreted as representing the
official views or policies of the Department of Defense or the U.S. Government. This research was
developed with funding from the Defense Advanced Research Projects Agency (DARPA).

STR 2024 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document Slide 2

DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

Overview

• Evidence-based Assurance
• Top-down Mission Critical Claims
• UPSat Critical Claims
• Watchdog Errors Revealed
• Working with an Open-Source Project

STR © 2023 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document Slide 3

DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

• Next Generation Assurance (NGA)
goes beyond required check-box
assurance, e.g. Risk Management
Framework (RMF)

• Authority to Operate (ATO) via RMF
is mandated, but

• Hackers know our systems better
than we do (Rob Joyce – NSA,
Cybersecurity Director)

• This presentation is about the use of
evidence-based assurance that will
provide confidence in critical system
properties

What Would Give You Confidence That
Your System Could Standup to Attack?

STR 2024 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document Slide 4

DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

Assurance Cases and Formal Methods

• For a cyber-physical system there is no single proof (or even
set of proofs) that by itself will establish critical SYSTEM level
properties

• There are many properties that might be proven about the
software in a system, which ones are valuable to prove?

• An assurance case provides an informal argument to justify a
claim using multiple evidence sources: testing, analysis,
trade studies, … and proof

STR © 2023 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document Slide 5

DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

ARBITER: A System Used to Build
Evidence-Based Assurance Arguments

Evidentiary
support

• Uses: Claim, Argument,
Evidence, Defeater
assurance case notation

• Built as part of DARPA’s
ARCOS program

• Designed with a
philosophy to avoid
users MSU (”making
stuff up”)

• Provides assessment of
evidentiary support
(confidence) to guide
development of
assurance case

STR © 2022 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document Slide 6

DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

Integrated Assurance Information Flow

System
Design
Artifacts

Model
Extraction

Evidence
Integration

&
Ingestion

Assurance
Case

Construction/
Review

ARBITER

Automated Rapid Certification of Software (ARCOS) provides evidence-based assurance
to support Authority to Operate (ATO) decisions

STR 2024 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document Slide 7

DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

ARBITER Pilot Workflow

• Phase 1: Identify mission specific critical claims. Establish top level
schematic assurance case structure (i.e., what methodology will be used to
establish assurance)

• Phase 2: Identify types of evidence that can support assurance case
– For discrete evidence consider connector/import strategy for evidence acquisition
– For informal evidence use document evidence with populated structured meta-data

• Phase 3: Structure assurance case and include evidence
– Populate evidence repository
– Define top level assurance case structure (methodology)
– Develop assurance case in ARBITER with strategy templates

What kind of evidence is needed to substantiate high
impact claims and how to source that evidence?

STR 2024 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document Slide 8

DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

Overarching Critical Claims Explored

1. The watchdog shall reset the comms subsystem XX clock
ticks after the subsystem enters a degraded mode
(correctness)
2. The watchdog shall never reset the comms subsystem in
any other case (innocuity)

Overarching Property Methodology:
• Intent – specification is correct
• Correctness – implementation is correct
• Innocuity – no unacceptable “collateral” impact

Overarching Properties: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9594298

STR 2024 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document Slide 9

DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

UPSat

STR 2024 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document Slide 10

DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

UPSat Assurance Pilot

• UPSat open-source hardware and
software CubeSat launched April
2017

• Part of the QB50 network of 50
CubeSats

• ARCOS focus on Communications
– Periodic telemetry transmission
– Receive, process, route messages
– AX.25, ECSS protocols

§ Encryption
§ Data encodings

– Hardware interfaces
§ Transmitter
§ Receiver
§ UART
§ Watchdog

UPSat Physical Diagram

UPSat SysML Internal Block Diagram

STR 2024 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document Slide 11

DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

Assurance Case Organization

Methodology

Mission Specific Claims

Evidenced Supporting Subclaims

STR 2024 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document Slide 12

DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

UPSat Assurance Case: Methodology Level

G347

G451

G467

G465
G456

G448

Correct wrt requirements

Software is secure

Mitigates the SPARTA attack taxonomy

Software is resilient

Satisfies mission critical claims

Software is free of critical CWEs

G347

G448

G451

G493

G465

G467

Key Claim Nodes

G493

STR 2024 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document Slide 13

DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

UPSat Evidence and Confidence Sources

• COMM subsystem tests run in QEMU simulation environment
– AX.25 communications protocol encoding/decoding

• Functional Requirements
– Some requirements supported by traditional pass/fail tests
– Causal model requirements (e.g., Watchdog)
– Instrumentation to collect evidence for causal model analysis

• Security
– Static analysis of CWEs
– Analysis of SPARTA attacks and mitigations

• Evidentiary support
– Dynamic evidence directly applied to causal model from

QEMU traces
– Analytic/document evidence applied to claims
– Objections used as one source of counter evidence

https://sparta.aerospace.org/

STR 2024 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document Slide 14

DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

UPSat Critical Claims Explored

1. The watchdog shall reset the comms subsystem XX clock
ticks after the subsystem enters a degraded mode
(correctness)
2. The watchdog shall never reset the comms subsystem in any
other case (innocuity)

STR 2024 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document Slide 15

DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

Correctness of Watchdog Timer (WDT)
Automated Reset
• Supports safety, security, availability requirements
• Every iteration of the COMM event loop:

– If subsystem state is OK, refresh the watchdog timer
– Else, ignore the watchdog, and the subsystem eventually resets

• Key requirements claims
1. The watchdog shall reset the comms subsystem XX clock ticks after the subsystem

enters a degraded mode.
2. The watchdog shall never reset the comms subsystem in any other case.

Relevant attack pattern: SPARTA: EX-0012.11 Sub-technique of: EX-0012

STR 2024 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document Slide 16

DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

Watchdog Simplified Causal Model

COMM OK

Refresh
Counter

Watchdog
Works

COMM Not
Reset

COMM Not
OK

Counter
Not

Refreshed

Watchdog
Works

COMM
Reset

The watchdog shall reset the comms
subsystem XX clock ticks after the
subsystem enters a degraded mode.

The watchdog shall never reset the comms
subsystem in any other case.

CPT

QEMU COMM SW/Watchdog Traces

Contract
Extraction

100% 100%

Claim 1 Claim 2

STR 2024 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document Slide 17

DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

Additional Test Data – No Tx Mode

With Tx Disabled Tests

"wd_refresh": [
 [
 "T",
 "T",
 500,
 514
],

14 contract failures

int32_t comms_routine_dispatcher(comms_tx_job_list_t *tx_jobs)
{
 if(tx_jobs == NULL){
 return COMMS_STATUS_NO_DATA;
 }
…
 if (comms_stats.rx_failed_cnt < 10 && comms_stats.tx_failed_cnt < 5) {
 HAL_IWDG_Refresh (&hiwdg);
 }
}

97%

STR 2024 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document Slide 18

DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

Amplifying Counter-Evidence
• Failures in CPT where the contract postcondition should be TRUE

generate objections

No-Tx Tests – Objection generated based on counter-evidence in software contracts

STR 2024 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document Slide 19

DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

UPSat Pilot Post-Mortem

1. We developed claims and derived requirements
2. We built a causal model (CM) and ran telemetry from the

emulation through it as evidence
3. Code inspection made us suspicious about the Watchdog.

We added the innocuity claim and updated the emulator to
provide more telemetry

4. Additional emulation allowed us to “discover” the problem
5. Nevertheless, contracts and CMs are powerful and would

have discovered the issue if intent model present

STR 2024 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document Slide 20

DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

Working with Open-Source Systems
• UPSat: a complete open-source system, versus third party libraries or

components
• Missing systems engineering artifacts

– Reengineered missing systems engineering artifacts upon which assurance is
typically built

– System/software architecture and design
– Requirements (some informally described in thesis, others from the QB50 program)

• Correctness
– Identify critical claims for mission specific application
– Overlay code with contracts to derive a causal model
– Instrument cyber-physical system via QEMU emulation to extract contractual

evidence

• Security
– Static analysis to look for CWEs
– SPARTA attack technique taxonomy for the satellite domain
– No need here to architect/isolate untrusted code

STR 2024 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document Slide 21

DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

Summary

• System engineering artifacts do double duty: they provide
design guidance and define the intent behind system
operation

• Causal models can confirm that the system is operating as
intended

• In open-source systems we need the design artifacts and
evidence that might accompany a more formal development
process concerned with assuring the overarching properties

• Assurance cases provide an informal unifying argument
behind mission critical system claims

STR 2024 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document Slide 22

DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

Thank You For Your Attention

Questions?

ARBITER

greg.eakman@str.us
howard.reubenstein@str.us

mailto:greg.eakman@str.us
mailto:howard.Reubenstein@str.us

STR © 2023 • Use or disclosure of data contained on this page is subject to the restriction on the cover sheet of this document.

DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

Building a Causal Model from Contracts

Requirements,
guidelines, etc.

Software
system

Contracts

Design

Development

Source
code

ARBITER CM
inputs

Contract
Spec

Contract
Logging

ARBITER toolchain

CM spec to
causal model

Contracts to
CM datasheet

CM evidence
aggregator

ARBITER

The ARBITER toolchain extracts causal model structure and probability tables from a language-independent contract
specification and saves them as intermediate data products. The extraction from source code uses language-specific
tooling and commenting schemes (currently supported languages are Rust and Python).

Causal
model

structure data

