
Introduction

Correct-by-construction Cryptographic Hardware
via Explicit Staging Transformations*

Yakir Forman Bill Harrison

High Assurance Solutions
Two Six Technologies, Inc.

Arlington Virginia

* This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA)
program Data Protection in Virtual Environments (DPRIVE). The views, opinions and/or findings expressed are
those of the author(s) and should not be interpreted as representing the official views or policies of the Department
of Defense or the U.S. Government.

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 1

Introduction

Background: Staging Transformations

“Staging Transformations” have been around a while

▶ Pass Separation transformation (Jørring&Scherlis86)

▶ Program transformation/annotation partitioning into compile-time and run-time parts
▶ Code constructor in MetaML (Taha&Sheard00)

▶ “1 + 2” is an expression of type int
▶ “< 1 + 2 >” is an expression of type code(int) that, if you run it, will produce 3

Today: Haskell/ReWire stage functions

▶ Staging transformation: just applying stage to part of algorithm
▶ stage x turns computation x into single cycle of hardware device
▶ stage functions are akin to lift functions of monad transformers

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 2

Introduction

Background: Staging Transformations

“Staging Transformations” have been around a while

▶ Pass Separation transformation (Jørring&Scherlis86)

▶ Program transformation/annotation partitioning into compile-time and run-time parts
▶ Code constructor in MetaML (Taha&Sheard00)

▶ “1 + 2” is an expression of type int
▶ “< 1 + 2 >” is an expression of type code(int) that, if you run it, will produce 3

Today: Haskell/ReWire stage functions

▶ Staging transformation: just applying stage to part of algorithm
▶ stage x turns computation x into single cycle of hardware device
▶ stage functions are akin to lift functions of monad transformers

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 2

Introduction

Background: ReWire Language & Toolchain

Haskell ReWire HDLSynthesizable
HDL

ReWire
compiler

▶ Inherits Haskell’s good qualities
▶ Pure functions, strong types, monads, equational reasoning, etc.

▶ ReWire compiler produces Verilog, VHDL, or FIRRTL
▶ Freely Available: https://github.com/twosixlabs/rewire
▶ ReWire Formalization in ITP Systems (Isabelle, Coq, Agda)

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 3

https://github.com/twosixlabs/rewire

Hello World in ReWire

Carry-Save Adders in ReWire

Carry-Save Addition (CSA) as Pure Function

f :: W8 → W8 → W8 → (W8, W8)
f a b c = (((a & b) || (a & c) || (b & c)) << ’0’ , a ⊕ b ⊕ c)

Running in GHCi

ghci> f 40 25 20
(48,37)

ghci> f 41 25 20
(50,36)

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 4

Hello World in ReWire

Carry-Save Adders in ReWire

Carry-Save Addition (CSA) as Pure Function

f :: W8 → W8 → W8 → (W8, W8)
f a b c = (((a & b) || (a & c) || (b & c)) << ’0’ , a ⊕ b ⊕ c)

CSA Device in ReWire

csa :: (W8, W8, W8) → Re (W8, W8, W8) () (W8, W8) ()
csa (a, b, c) = do

i ← signal (f a b c)
csa i -- N.b., tail-recursive

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 4

Hello World in ReWire

Carry-Save Adders in ReWire

Carry-Save Addition (CSA) as Pure Function

f :: W8 → W8 → W8 → (W8, W8)
f a b c = (((a & b) || (a & c) || (b & c)) << ’0’ , a ⊕ b ⊕ c)

CSA Device in ReWire

csa :: (W8, W8, W8) → Re (W8, W8, W8) () (W8, W8) ()
csa (a, b, c) = do

i ← signal (f a b c)
csa i -- N.b., tail-recursive

Mealy Machine

output & next state logic

storage s

outputs oinputs i

storage feedback

internal

Corresponding ReWire monad

type M s = StateT s Identity
-- ReWire monad

type Re i s o = ReacT i o (M s)
-- consume/produce inputs & outputs synchronously

signal :: o → Re i s o i

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 4

Hello World in ReWire

Carry-Save Adders in ReWire

Carry-Save Addition (CSA) as Pure Function

f :: W8 → W8 → W8 → (W8, W8)
f a b c = (((a & b) || (a & c) || (b & c)) << ’0’ , a ⊕ b ⊕ c)

CSA Device in ReWire

csa :: (W8, W8, W8) → Re (W8, W8, W8) () (W8, W8) ()
csa (a, b, c) = do

i ← signal (f a b c)
csa i -- N.b., tail-recursive

Stream Semantics [NFM23]

((40,25,20),(),(0,0)), ((41,25,20),(),(48,37)), ((40,25,20),(),(50,36)), ...

tick0 tick1 tick2

(i0, s0, o0), (i1, s1, o1), (i2, s2, o2), ...

tick0 tick1 tick2

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 4

Hello World in ReWire

Carry-Save Adders in ReWire

Carry-Save Addition (CSA) as Pure Function

f :: W8 → W8 → W8 → (W8, W8)
f a b c = (((a & b) || (a & c) || (b & c)) << ’0’ , a ⊕ b ⊕ c)

CSA Device in ReWire

csa :: (W8, W8, W8) → Re (W8, W8, W8) () (W8, W8) ()
csa (a, b, c) = do

i ← signal (f a b c)
csa i -- N.b., tail-recursive

Stream Semantics [NFM23]

((40,25,20),(),(0,0)), ((41,25,20),(),(48,37)), ((40,25,20),(),(50,36)), ...

(48,37) = f 40 25 20

(50,36) = f 41 25 20

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 4

Hello World in ReWire

Carry-Save Adders in ReWire

Carry-Save Addition (CSA) as Pure Function

f :: W8 → W8 → W8 → (W8, W8)
f a b c = (((a & b) || (a & c) || (b & c)) << ’0’ , a ⊕ b ⊕ c)

CSA Device in ReWire

csa :: (W8, W8, W8) → Re (W8, W8, W8) () (W8, W8) ()
csa (a, b, c) = do

i ← signal (f a b c)
csa i -- N.b., tail-recursive

ReWire Compiler

$ rwc CSA.hs --verilog
$ ls -l CSA.v

-rw-r--r-- 1 william.harrison staff 2159 Nov 14 08:33 CSA.v

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 4

Hello World in ReWire

Carry-Save Adders in ReWire
“Curried” CSA takes inputs one per cycle

data Ans a = DC | Val a -- "don’t care" and "valid"

pcsa :: W8 → Re W8 () (Ans (W8, W8)) ()
pcsa a = do

b ← signal DC
c ← signal DC
a’ ← signal (Val (f a b c))
pcsa a’

Stream Semantics

((40,25,20),(),(0,0)), ((41,25,20),(),(48,37)), ((40,25,20),(),(50,36)), ...

(48,37) = f 40 25 20

(50,36) = f 41 25 20

(40,(),DC), (25,(),DC), (20,(),DC), (41,(),Val (48,37)), …

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 4

Hello World in ReWire

Semantics & Staging Functions

Mealy Machine

output & next state logic

storage s

outputs oinputs i

storage feedback

internal

Corresponding ReWire monad

type M s = StateT s Identity
-- ReWire monad

type Re i s o = ReacT i o (M s)
-- consume/produce inputs & outputs synchronously

signal :: o → Re i s o i

▶ Formal Semantics [NFM23] is stream of “snapshots” : Stream (i , s , o)
▶ Staging Functions

stage :: M s a → Re i s (Maybe o) i
stage x = do

lift x
i’ ← signal Nothing
return i’

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 5

Explicit Staging

Correct-by-construction Cryptographic Hardware via Explicit Staging Transformations
Intuitive Storyboard of Technique

Imperative Algorithm

▶ Pseudocode Transliterated to Haskell
▶ “Imperative” ⇒ use State Monad

Staged Algorithm in ReWire

▶ Performant HW via ReWire compiler
▶ Coq Theorems relate stage(xi) to xi

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 6

Explicit Staging

Correct-by-construction Cryptographic Hardware via Explicit Staging Transformations
Intuitive Storyboard of Technique

Imperative Algorithm Staged Algorithm Coq Verification

Staging Theorems

Hardware

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 7

Correct-by-Construction BLAKE2

Today: BLAKE2

Background

▶ Cryptographic hash function
▶ Input: message blocks of 16 64-bit words
▶ Output: 8 64-bit words

▶ Can be used for pseudorandom number generation, e.g., in openFHE library
▶ Defined as imperative pseudocode in

▶ RFC 7693: BLAKE2 Cryptographic Hash and Message Authentication Function

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 8

Correct-by-Construction BLAKE2

Cryptographic Functions in ReWire
Functions are just Functions

Blake2 Mixing Function*

RFC 7693 BLAKE2 Crypto Hash and MAC November 2015

3. BLAKE2 Processing

3.1. Mixing Function G

 The G primitive function mixes two input words, "x" and "y", into
 four words indexed by "a", "b", "c", and "d" in the working vector
 v[0..15]. The full modified vector is returned. The rotation
 constants (R1, R2, R3, R4) are given in Section 2.1.

 FUNCTION G(v[0..15], a, b, c, d, x, y)
 |
 | v[a] := (v[a] + v[b] + x) mod 2**w
 | v[d] := (v[d] ^ v[a]) >>> R1
 | v[c] := (v[c] + v[d]) mod 2**w
 | v[b] := (v[b] ^ v[c]) >>> R2
 | v[a] := (v[a] + v[b] + y) mod 2**w
 | v[d] := (v[d] ^ v[a]) >>> R3
 | v[c] := (v[c] + v[d]) mod 2**w
 | v[b] := (v[b] ^ v[c]) >>> R4
 |
 | RETURN v[0..15]
 |
 END FUNCTION.

Saarinen & Aumasson Informational [Page 7]

*RFC 7693: BLAKE2 Cryptographic Hash and Message Authentication Function

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 9

Correct-by-Construction BLAKE2

Cryptographic Functions in ReWire
Functions are just Functions

Blake2 Mixing Function*

RFC 7693 BLAKE2 Crypto Hash and MAC November 2015

3. BLAKE2 Processing

3.1. Mixing Function G

 The G primitive function mixes two input words, "x" and "y", into
 four words indexed by "a", "b", "c", and "d" in the working vector
 v[0..15]. The full modified vector is returned. The rotation
 constants (R1, R2, R3, R4) are given in Section 2.1.

 FUNCTION G(v[0..15], a, b, c, d, x, y)
 |
 | v[a] := (v[a] + v[b] + x) mod 2**w
 | v[d] := (v[d] ^ v[a]) >>> R1
 | v[c] := (v[c] + v[d]) mod 2**w
 | v[b] := (v[b] ^ v[c]) >>> R2
 | v[a] := (v[a] + v[b] + y) mod 2**w
 | v[d] := (v[d] ^ v[a]) >>> R3
 | v[c] := (v[c] + v[d]) mod 2**w
 | v[b] := (v[b] ^ v[c]) >>> R4
 |
 | RETURN v[0..15]
 |
 END FUNCTION.

Saarinen & Aumasson Informational [Page 7]

ReWire Realization (pretty printed by hand)

_G :: Reg → Reg → Reg → Reg → Reg → Reg → M ()
_G a b c d x y = do

a <== a + b + x
d <== (d ^ a) >>> _R1
c <== c + d
b <== (b ^ c) >>> _R2
a <== a + b + y
d <== (d ^ a) >>> _R3
c <== c + d
b <== (b ^ c) >>> _R4

*RFC 7693: BLAKE2 Cryptographic Hash and Message Authentication Function

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 9

Correct-by-Construction BLAKE2

Checking against RFC7369
Screenshot from RFC7693, Appendix A

Run Tests in Haskell
$ ghci Blake2b-reference.hs
GHCi, version 9.2.5: https://www.haskell.org/ghc/ :? for help
[1 of 1] Compiling (Blake2b-reference.hs, interpreted)
ghci> _BLAKE2b_512 "abc"

BA 80 A5 3F 98 1C 4D 0D 6A 27 97 B6 9F 12 F6 E9
4C 21 2F 14 68 5A C4 B7 4B 12 BB 6F DB FF A2 D1
7D 87 C5 39 2A AB 79 2D C2 52 D5 DE 45 33 CC 95
18 D3 8A A8 DB F1 92 5A B9 23 86 ED D4 00 99 23

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 10

Correct-by-Construction BLAKE2

Checking against RFC7369
Screenshot from RFC7693, Appendix A

Run Tests in Haskell
$ ghci Blake2b-reference.hs
GHCi, version 9.2.5: https://www.haskell.org/ghc/ :? for help
[1 of 1] Compiling (Blake2b-reference.hs, interpreted)
ghci> _BLAKE2b_512 "abc"

BA 80 A5 3F 98 1C 4D 0D 6A 27 97 B6 9F 12 F6 E9
4C 21 2F 14 68 5A C4 B7 4B 12 BB 6F DB FF A2 D1
7D 87 C5 39 2A AB 79 2D C2 52 D5 DE 45 33 CC 95
18 D3 8A A8 DB F1 92 5A B9 23 86 ED D4 00 99 23

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 10

Correct-by-Construction BLAKE2

Correct-by-Construction Cryptographic Hardware via Explicit Staging Transformations

Blake2 Function*
FUNCTION F(h[0..7], m[0..15], t, f)
|
| // Initialize local work vector v[0..15]
| ...
| v[12] := v[12] ^ (t mod 2**w)
| v[13] := v[13] ^ (t >> w)
| IF f = TRUE THEN
| | v[14] := v[14] ^ 0xFF..FF
| END IF.
|
| // Cryptographic mixing
| ...
|
| FOR i = 0 TO 7 DO
| | h[i] := h[i] ^ v[i] ^ v[i + 8]
| END FOR.
|
| RETURN h[0..7]
|
END FUNCTION.

* From: RFC 7693: BLAKE2 Cryptographic Hash and Message Authentication Function

ReWire Realization
_F :: W 128 → Bit → M ()
_F t f = do

init_work_vector
V12 <== V12 ^ lowword t
V13 <== V13 ^ highword t
if f then

V14 <== V13 ^ 0xF. . .F
else

return ()
cryptomixing
xor_two_halves

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 11

Correct-by-Construction BLAKE2

Correct-by-Construction Cryptographic Hardware via Explicit Staging Transformations

Blake2 Function*
FUNCTION F(h[0..7], m[0..15], t, f)
|
| // Initialize local work vector v[0..15]
| ...
| v[12] := v[12] ^ (t mod 2**w)
| v[13] := v[13] ^ (t >> w)
| IF f = TRUE THEN
| | v[14] := v[14] ^ 0xFF..FF
| END IF.
|
| // Cryptographic mixing
| ...
|
| FOR i = 0 TO 7 DO
| | h[i] := h[i] ^ v[i] ^ v[i + 8]
| END FOR.
|
| RETURN h[0..7]
|
END FUNCTION.

* From: RFC 7693: BLAKE2 Cryptographic Hash and Message Authentication Function

(Staged) ReWire Realization
_F :: W 128 → Bit → Re ()
_F t f = do

stage $ init_work_vector
V12 <== V12 ^ lowword t
V13 <== V13 ^ highword t
if f then

V14 <== V13 ^ 0xF. . .F
else

return ()
stage cryptomixing
stage xor_two_halves

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 11

Correct-by-Construction BLAKE2

Staging Theorems

Theorem (Staging Theorem)

For all snapshots (i , s , o) and input streams (i′ ◁ is),

J stage x >>= f K (i, s, o) (i′ ◁ is) = (i, s, o) ◁ J f K i′ (i′, s′ , Nothing) is
where
(a , s′) = runST J x K s

▶ Each flavor of stage has a similar theorem
▶ All are formalized and proved in Coq

*The symbol ◁ is stream “cons”.

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 12

Correct-by-Construction BLAKE2

Correctness Theorem*

▶ refb2b describes an imperative (state-monadic) version of BLAKE2b
▶ stagedb2b formalizes the action of the device on a single input
▶ Let six be the unrolling:

stagedb2b Start >>= stagedb2b >>= stagedb2b >>= stagedb2b >>= stagedb2b >>= stagedb2b

Theorem (Correctness)

out7 (JsixK (i, s, o) ins) = fst (runST (refb2b (m0, m1, m2, m3, p)) s)
where
ins = m0 ◁ m1 ◁ m2 ◁ m3 ◁ p ◁ is

*Proved in Coq using staging theorems.

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 13

Conclusions & Future Work

Summary & Conclusions
Correct-by-construction Cryptographic Hardware via Explicit Staging Transformations

IEEE Spectrum 12/22/23

Hardware Verification in the large

▶ DARPA DPRIVE Project with Duality;
starting Phase 3

▶ Verifying Aggressively Optimized
Hardware Accelerators for FHE

▶ See Formalized High Level Synthesis
with Applications to Cryptographic
Hardware [NASA Formal Methods 2023] for
semantics, etc.

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 14

Conclusions & Future Work

THANKS!

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 15

	Introduction
	Hello World in ReWire
	Explicit Staging
	Correct-by-Construction BLAKE2
	Conclusions & Future Work

