
© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

T H E M E : A S S U R E D O P E N S O U R C E A N D M E M O R Y S A F E T Y

Formal Verification of AWS-LibCrypto

Speaker: Yan Peng (she/her)

2 0 2 4 H I G H C O N F I D E N C E S O F T W A R E A N D S Y S T E M S C O N F E R E N C E

Applied Scientist
Amazon Web Services, Inc.

1

Work completed by AWS and Galois, Inc. through collaboration

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

1. AWS-LibCrypto

2. Formal Verification Overview

3. C and x86 Verification using SAW

4. Arm Verification

5. s2n-bignum

6. CI and Proof Maintenance

Outline

2

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• An open-source general-purpose cryptographic library owned and
maintained by AWS

• Forked from BoringSSL and optimized for AWS use cases
• FIPS 140-3 validated
• Support multiple platforms for customer needs

3

AWS-LibCrypto (AWS-LC)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Cryptographic primitives have cumulative
performance and cost impact over network
connections

• Algorithm level:
• EC: windowed double-and-add scalar point multiplication
• AES-GCM: Karatsuba multiplication & aggregated reduction

• Micro-architecture level:
• Access to all machine instructions
• Precise control over the scheduling of operations - parallelism

4

Performance Optimization

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Cryptography is the foundation for protecting customer data
• David A. Wheeler – How to Prevent the next Heartbleed [1]

“Do not use just one of these tools and techniques to develop secure software.”

• Testing and dynamic analysis: positive and negative unit tests, fuzz tests, Clang
sanitizers, Valgrind, etc.

• Also, formal verification
• Use of automated logical reasoning to prove properties of a program or system
• Properties: memory safety and functional correctness

5

Safety Mechanisms

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Written in multiple languages (C, assembly for various platforms)
• Use of multiple formal verification tools is often unavoidable
• Proof integration

• Highly-optimized
• Each optimization requires some proof effort to prove soundness
• Large proof terms, we want to build robust automation using SAT/SMT
• Some optimization could not be automatically solved, need user guidance

• Formal proofs need to catch up with new changes/optimizations

6

Highly-optimized open-source cryptographic
library is challenging to verify

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Algorithm Variants Platform Tech LOC (approx.) Proof Run Time

SHA-2 384, 512 SandyBridge+ SAW 1000 150s

SHA-2 384 Neoverse-n1
Neoverse-v1

SAW, Prototype Arm
Verification Tool

2600 230s

HMAC SHA-384 SandyBridge+ SAW 1000 327s

AES-KW(P) 256 SandyBridge+ SAW 700 215s

Elliptic Curve
Keys and
Parameters

P-384 SandyBridge+ SAW, Coq, HOL-Light 2400+20000 620s

ECDSA P-384, SHA-384 SandyBridge+ SAW 1500 703s(~11mins)

ECDH P-384 SandyBridge+ SAW, Coq, HOL-Light 400 423s

HKDF HMAC-SHA384 SandyBridge+ SAW 700 220s

7

Verified Algorithms

• SandyBridge+ : x86_64 with AES-NI, CLMUL and AVX

Verified up to API
unbounded proof

Total ~ 10,000 SAW

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 8

AWS-LC Formal Verification Workflow
AArch64
functions

Assembler

Arm Verification

• Functional correctness
• Memory region bounds

and alignment checks

Elf loader

SAW

• Functional correctness
• Memory safety check

C functions

x86_64
functions

Assembler

Coq

• Establish
mathematical

properties

Gallina spec

Assumed

100101
011101
010101
010011

100101
011101
010101
010011

LLVM
IR

✓
Cryptol

spec

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Unbounded proofs – improved comparing to previous results
• Does not support Arm (64bit)

9

Verifying C and x86_64 using SAW

SAW

Macaw

100101
011101
010101
010011

LLVM
IR

CFG 𝑆𝐴𝑊𝐶𝑜𝑟𝑒!"#$
Symbolic
Execution

✓ 𝑆𝐴𝑊𝐶𝑜𝑟𝑒%&'#()$
Symbolic
Execution

DSL for SMT

What4

Solvers

Cryptol Specification

Built-in proof tactics

Compositional proof

C

x86

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Memory safety: memory access is within bounds and correctly aligned
• Implemented in OCaml, currently exploring Lean

10

Verifying Arm Assembly

OCaml SMT
Interface

OCaml ELF
Loader

Solvers

100101
011101
010101
010011

Executable

S0 S1 …

Arm State

✓ User
Guidance

✓

Verification
Conditions

OCaml Specification

SMT

SMT Proof Obligations

Cryptol Specification

+

Automatic
translation

Bounded analysis +
Unbounded proofs

Symbolic & Concrete
Simulation

Assertions attached
to instructions

OCaml

Structure sharing and
memorization

Common subexpression
elimination

Arm

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 11

Integrating Arm Proofs with SAW

C impl✓Cryptol
spec

Assume correctness of
assembly

Verify C function through
compositional proof

Automatic translation of
Cryptol spec to OCaml

Verify Arm assembly using
translated spec

Arm impl✓OCaml
spec

Arm impl
Assumed

callscalls

✓Cryptol
spec

Automatic
translation

OCaml

SAW

100101
011101
010101
010011

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• ECDH verification workflow

12

Use of Coq for Mathematical Reasoning

• Mathematical reasoning and induction is easier in a theorem prover
• We want: the group multiplication used in the ECDH implementation is in the correct group

of P-384 points

SAW Coqs2n-bignum & fiat-crypto

P-384 Field
Functions P-384 Point

Functions

ECDH API functions

𝐶𝑟𝑦𝑝𝑡𝑜𝑙!"#$ ≡ 𝐺*&)+#

P-384 Field
Functions

Assumed correct in SAW

✓
Cryptol

spec

Automatic
translation

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• An open-source library developed at AWS
• Efficient implementation of low-level big

number operations
• Written in constant-time fashion
• Supports both x86_64 and aarch64
• Formally verified in HOL-Light

13

s2n-bignum

AWS-LC

Asm implementations

s2n-bignum

Asm implementations

Formal verification

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 14

Formal verification enables fearless
performance optimization

42

95

299

78

126

496

0 100 200 300 400 500 600

RSA4096 sign

RSA3072 sign

RSA2048 sign

With s2n-bignum Before s2n-bignum

2781

4917

10736

3800

6579

18836

0 5000 10000 15000 20000

RSA4096 verify

RSA3072 verify

RSA2048 verify

With s2n-bignum Before s2n-bignum

6497
12868

0 2000 4000 6000 8000 10000 12000 14000

Curve25519 point mul

With s2n-bignum Before s2n-bignum

Note: performance (op/sec) measured on Graviton2 using benchmarking tool provided in AWS-LC

• RSA sign: 30%~80%; verify: 30%~75%
• Curve25519 point mul: 98%

• Fine tuning for the micro-architecture
• Curve25519:

• Lenngren’s X25519 optimization[2]
• SLOTHY[3]

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Total CI run time 30min:
• Saw-x86_64: 17mins
• Saw-aarch64: 2mins
• Coq: 28mins (mostly building fiat-crypto)
• Arm Verification: 9mins

• Requires reasonable effort for proof
maintenance
• Year 2023, around 16/616(PRs) fixes
• LLM? 15

Continuous Integration and Proof Maintenance

is a submodule of

is run in the CI of

All changes to AWS-LC
requires all formal
verification to pass
before submitting

✓

• Formal verification needs to run relatively fast
• Formal verification of open-source libraries requires continuous effort
• Formal proofs need to catch-up with new optimizations

AWS-LC AWS-LC
Verification

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Summary: We formally verified several critical algorithms in the open-source
cryptographic library AWS-LC
• These proofs are open-source and run in the continuous integration

16

Summary and Lessons Learnt

Lessons Learnt:
• Verifying highly-optimized cryptographic library is a challenging task that

requires multiple formal techniques/tools
• Formal verification enables fearless performance optimization
• Formal verification of open-source libraries requires continuous effort

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!
Yan Peng
yppe@amazon.com

17

Open-source cryptography @ AWS
https://aws.amazon.com/security/opensource/cryptography

AWS-LC-verification
https://github.com/awslabs/aws-lc-verification

s2n-bignum
https://github.com/awslabs/s2n-bignum

AWS-LC
https://github.com/aws/aws-lc

https://aws.amazon.com/security/opensource/cryptography

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

References

[1] https://dwheeler.com/essays/heartbleed.html

[2] https://github.com/Emill/X25519-AArch64/blob/master/X25519_AArch64.pdf

[3] https://github.com/slothy-optimizer/slothy

18

https://dwheeler.com/essays/heartbleed.html
https://github.com/Emill/X25519-AArch64/blob/master/X25519_AArch64.pdf
https://github.com/slothy-optimizer/slothy

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 19
Source: https://xkcd.com/1354/

