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• An open-source general-purpose cryptographic library owned and 
maintained by AWS

• Forked from BoringSSL and optimized for AWS use cases
• FIPS 140-3 validated
• Support multiple platforms for customer needs
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AWS-LibCrypto (AWS-LC)
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• Cryptographic primitives have cumulative 
performance and cost impact over network 
connections

• Algorithm level: 
• EC: windowed double-and-add scalar point multiplication
• AES-GCM: Karatsuba multiplication & aggregated reduction

• Micro-architecture level: 
• Access to all machine instructions
• Precise control over the scheduling of operations - parallelism

4

Performance Optimization



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Cryptography is the foundation for protecting customer data
• David A. Wheeler – How to Prevent the next Heartbleed [1]

“Do not use just one of these tools and techniques to develop secure software.”

• Testing and dynamic analysis: positive and negative unit tests, fuzz tests, Clang 
sanitizers, Valgrind, etc.

• Also, formal verification 
• Use of automated logical reasoning to prove properties of a program or system
• Properties: memory safety and functional correctness
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Safety Mechanisms
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• Written in multiple languages (C, assembly for various platforms)
• Use of multiple formal verification tools is often unavoidable
• Proof integration

• Highly-optimized
• Each optimization requires some proof effort to prove soundness
• Large proof terms, we want to build robust automation using SAT/SMT
• Some optimization could not be automatically solved, need user guidance

• Formal proofs need to catch up with new changes/optimizations
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Highly-optimized open-source cryptographic 
library is challenging to verify



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Algorithm Variants Platform Tech LOC (approx.) Proof Run Time

SHA-2 384, 512 SandyBridge+ SAW 1000 150s

SHA-2 384 Neoverse-n1 
Neoverse-v1

SAW, Prototype Arm 
Verification Tool

2600 230s

HMAC SHA-384 SandyBridge+ SAW 1000 327s

AES-KW(P) 256 SandyBridge+ SAW 700 215s

Elliptic Curve 
Keys and 
Parameters

P-384 SandyBridge+ SAW, Coq, HOL-Light 2400+20000 620s

ECDSA P-384, SHA-384 SandyBridge+ SAW 1500 703s(~11mins)

ECDH P-384 SandyBridge+ SAW, Coq, HOL-Light 400 423s

HKDF HMAC-SHA384 SandyBridge+ SAW 700 220s
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Verified Algorithms

• SandyBridge+ : x86_64 with AES-NI, CLMUL and AVX

Verified up to API 
unbounded proof

Total ~ 10,000 SAW
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AWS-LC Formal Verification Workflow
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• Unbounded proofs – improved comparing to previous results
• Does not support Arm (64bit)
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Verifying C and x86_64 using SAW
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• Memory safety: memory access is within bounds and correctly aligned
• Implemented in OCaml, currently exploring Lean
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Verifying Arm Assembly
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Integrating Arm Proofs with SAW
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spec
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• ECDH verification workflow
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Use of Coq for Mathematical Reasoning

• Mathematical reasoning and induction is easier in a theorem prover
• We want: the group multiplication used in the ECDH implementation is in the correct group 

of P-384 points

SAW Coqs2n-bignum & fiat-crypto
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• An open-source library developed at AWS
• Efficient implementation of low-level big 

number operations
• Written in constant-time fashion
• Supports both x86_64 and aarch64
• Formally verified in HOL-Light
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s2n-bignum

AWS-LC

Asm implementations

s2n-bignum

Asm implementations

Formal verification
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Formal verification enables fearless 
performance optimization
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Note: performance (op/sec) measured on Graviton2 using benchmarking tool provided in AWS-LC

• RSA sign: 30%~80%; verify: 30%~75%
• Curve25519 point mul: 98% 

• Fine tuning for the micro-architecture
• Curve25519:

• Lenngren’s X25519 optimization[2]
• SLOTHY[3]
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• Total CI run time 30min:
• Saw-x86_64: 17mins
• Saw-aarch64: 2mins
• Coq: 28mins (mostly building fiat-crypto)
• Arm Verification: 9mins

• Requires reasonable effort for proof 
maintenance
• Year 2023, around 16/616(PRs) fixes
• LLM? 15

Continuous Integration and Proof Maintenance

is a submodule of

is run in the CI of 

All changes to AWS-LC 
requires all formal 
verification to pass 
before submitting

✓

• Formal verification needs to run relatively fast
• Formal verification of open-source libraries requires continuous effort
• Formal proofs need to catch-up with new optimizations

AWS-LC AWS-LC 
Verification
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Summary: We formally verified several critical algorithms in the open-source 
cryptographic library AWS-LC
• These proofs are open-source and run in the continuous integration
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Summary and Lessons Learnt

Lessons Learnt:
• Verifying highly-optimized cryptographic library is a challenging task that 

requires multiple formal techniques/tools
• Formal verification enables fearless performance optimization
• Formal verification of open-source libraries requires continuous effort
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Thank you!
Yan Peng
yppe@amazon.com
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Open-source cryptography @ AWS
https://aws.amazon.com/security/opensource/cryptography 

AWS-LC-verification
https://github.com/awslabs/aws-lc-verification

s2n-bignum
https://github.com/awslabs/s2n-bignum

AWS-LC
https://github.com/aws/aws-lc

https://aws.amazon.com/security/opensource/cryptography
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