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• An emerging consensus amongst computer 
science thought leaders is that memory-safe 
programming language technology needs to be 
adopted more broadly:

• “NSA recommends using a memory safe 
language when possible.” (11/2022)

• The White House has published a report 
championing the adoption of memory safe 
programming languages to enhance software 
security.  (02/2024)

• Microsoft, Google, and Amazon have all 
announced significant Rust initiatives.

• A Rust development environment has achieved 
ISO 26262 and IEC 61508 certification

Motivation
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• Memory-safe languages are not new

• Collins successfully used Ada in major commercial and government avionics 

products in the 1980s and 1990s

• Collins used SPARK effectively on high-assurance products for the intelligence 

community in the 2000s

• Recent improvements in compiler technology have made memory safety very low cost

• Additionally, novel memory ownership models (e.g, in Rust) have allowed references 

to be used safely

• Development organizations have tired of continual memory errors, leading to a never-

ending parade of security vulnerabilities, despite the use of increasingly sophisticated 

analysis tools

Why Memory-Safe Languages?  Why now?
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• In the rest of this talk, I will focus on examples of how the Trusted

Methods team and our research partners are currently moving 

aggressively to support memory-safe languages in

• Formal, Automated Synthesis, and 

• Formal, Automated Analysis

• of high-assurance systems

Memory-Safe Languages: Synthesis and Analysis
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Synthesis
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• Given the advantages of memory-safe languages cited in the NSA and White 
House reports, it seems natural to target memory-safe languages for software 
synthesis tasks

• We are pursuing a number of formal synthesis scenarios, including:
• Code synthesis from a Model-Based Systems Engineering model
• High-assurance source-to-source transpilation
• Code synthesis from a formal specification

• NB: The seL4 Foundation is supporting memory-safe language synthesis for 
a verified operating system environment by funding the development of Rust 
bindings for seL4
– Full Disclosure: The author is on the Board of Governors of the seL4 

Foundation

Memory-Safe Language Synthesis Technologies
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• HAMR generates skeletal implementation code from architecture models in 
either AADL or SysML v2

• HAMR translates architecture models into Slang, a subset of Scala
• The Kansas State team has developed an SMT-based formal analysis 

capability for Slang, called Logika

• KSU developed a transpiler from Slang to “Embedded C” for the DARPA 
CASE program
– With this capability, HAMR can target seL4, Linux, or a JVM-based 

simulator with a flick of a switch

• For DARPA PROVERS, KSU is developing a Slang-to-Rust transpiler

Kansas State University: Code Synthesis for Model-Based Systems 
Engineering with HAMR
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HAMR Overview

9

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

CASE: C

PROVERS: Rust

AADL/SysML v2 

Model



• Measurement and Attestation

– gathering evidence of booting system

– gathering evidence of executing system

– gathering evidence of evidence gathering

• Appraisal

– evaluating evidence of expectation

– is a system behaving as expected?

• Today - Boot and runtime appraisal

– relying party requires trust

– attestation generates evidence

– appraiser checks expectations over evidence

• Tomorrow - Systems over time 

– records and ledgers for evidence

– system and local manifests for configuration

– flexible mechanism for system appraisals

Copland Verified Remote Attestation (University of Kansas)

10

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Appraiser Target

attestation

request

evidence

package

appraisal

result

Relying

Party



KU Copland Remote Attestation Protocol Synthesis
(DARPA CASE)

Remote Attestation Protocol Implementation Synthesized from Coq Spec
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KU Copland Remote Attestation Protocol Synthesis
(Plan for DARPA PROVERS)
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Analysis
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• A number of verification tools have been developed for Rust, including:

• Cruesot (Inria)

• Prusti (ETH Zurich)

• RustHorn (University of Tokyo/Chiba University)

• Kani (Amazon)

• Verus (Carnegie-Mellon University)

• With Verus (see 2024 HCSS talk for details), developers express proofs and 
specifications using Rust syntax, allowing proofs to take advantage of Rust’s 
linear types and borrow checking.  

– Note: The Verus team is part of the Collins DARPA PROVERS effort.

Verification Tools for Memory-Safe Languages
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• AdaCore provides a verification toolsuite, GNATprove, for SPARK 

2014

– SPARK guarantees a number of important program properties, 

including exception freedom, array indices stay in bounds, etc.

– SPARK also provides language support for contracts, with 

preconditions, postconditions, data dependencies, control 

dependencies, termination guarantees, etc.

– GNATprove frontends modern SMT solvers, such as Z3 and 

CVC4

Verification Tools for Memory-Safe Languages (cont’d.)
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• We desire to create high-assurance components using hardware/software co-
design/co-assurance techniques

• The high-level Architecture Models in CASE, and now PROVERS supports both 
hardware- and software-based realizations

• The ability to defer and/or change the allocation of functionality to hardware or 
software provides development flexibility

• Hardware provides greater tamper resistance, as well as higher performance

• Hardware/Software Co-Design is enabled by a High-Level Specification Language 
(HLS), which is closer to mainstream programming languages than is a Hardware 
Description Language such as VHDL or Verilog

– Most HLS’s are based on C

– However, memory-safe languages are a natural match for hardware

– Thus, we see a need for Hardware/Software Co-Assurance using a memory-safe 
programming language such as Rust

Hardware/Software Co-Design and Co-Assurance
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• The hardware/software verification approach we leverage 
was developed by David Russinoff and colleagues

• Their approach is called Restricted Algorithmic C (RAC), as 
it is based on Mentor’s HLS Algorithmic C

• RAC is extensively documented in Russinoff’s book, Formal 
Verification of Floating-Point Hardware Design: A 
Mathematical Approach

– In Russinoff’s text, RAC is applied to the verification of 
realistic Arm floating-point designs using the ACL2 
theorem prover

–RAC, and the verifications described in the book, are all 
available in the standard ACL2 theorem prover 
distribution

Hardware/Software Co-Assurance using Rust
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• RAR currently is a simple Rust frontend to the RAC toolchain

– RAR has RAC semantics, with Rust syntax

• We have created a number of examples using the RAR toolchain, 
including:

– Array-Backed Verified Algebraic Data Types: Stack, Singly-
linked list, Doubly-linked list, Circular Queue, Deque, etc.

– A DFA-based JSON lexer, coupled with an LL(1) JSON parser

– A significant subset of the Monocypher modern cryptography 
suite

Restricted Algorithmic Rust (RAR)
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RAR Toolchain

19

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

RAC Source 

Code

ACL2 

Theorem 

Prover

RAC-to-ACL2 

Translator

Algorithmic C 

Header
Lemmas

C++ Compiler
Proofs 

(.cert files)

#include

Hardware 

Design Tools

Simulation and 

Test

“Verification

Side”

“Design

Side”

Synthesis, 

Simulation, Test, 

Equivalence 

Checking

RAR Source 

Code

Plexi

Transpiler



Example: Knuth’s “Dancing Links” for Exact Cover Problems
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(a) Doubly-linked circular list portion prior to remove operation.

(b) After remove of element Y.

(c) After restore of element Y.
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• A circular doubly-linked list (CDLL) is specified in RAR as follows:

Dancing Links in RAR
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const CDLL_MAX_NODE1: usize = 8191; // arbitrary

const CDLL_MAX_NODE: usize = CDLL_MAX_NODE1 - 1;

#[derive(Copy, Clone)]

struct CDLLNode {

alloc: u2,

val: i64,

prev: usize,

next: usize,

}

#[derive(Copy, Clone)]

struct CDLL {

nodeHd: usize,

nodeCount: usize,

nodeArr: [CDLLNode; CDLL_MAX_NODE1],

}



Dancing Links remove()
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fn CDLL_remove(n: usize, mut CDObj: CDLL) -> CDLL {

if (n > CDLL_MAX_NODE) {

return CDObj;

} else {

if (n == CDObj.nodeHd) {  // Can't remove head

return CDObj;

} else {

if (CDObj.nodeCount < 3) {  // Need three elements

return CDObj;

} else {

let nextNode: usize = CDObj.nodeArr[n].next;

let prevNode: usize = CDObj.nodeArr[n].prev;

CDObj.nodeArr[prevNode].next = nextNode;

CDObj.nodeArr[nextNode].prev = prevNode;

CDObj.nodeCount = CDObj.nodeCount - 1;

return CDObj; } } } }



Translation to ACL2
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(DEFUND CDLL_REMOVE (N CDOBJ)

(IF1 (LOG> N (CDLL_MAX_NODE))

CDOBJ

(IF1 (LOG= N (AG 'NODEHD CDOBJ))

CDOBJ

(IF1 (LOG< (AG 'NODECOUNT CDOBJ) 3)

CDOBJ

(LET* ((NEXTNODE (AG 'NEXT (AG N (AG 'NODEARR CDOBJ))))

(PREVNODE (AG 'PREV (AG N (AG 'NODEARR CDOBJ))))

(CDOBJ (AS 'NODEARR

(AS PREVNODE

(AS 'NEXT

NEXTNODE

(AG PREVNODE (AG 'NODEARR CDOBJ)))

(AG 'NODEARR CDOBJ))

CDOBJ))

(CDOBJ (AS 'NODEARR

(AS NEXTNODE

(AS 'PREV

PREVNODE

(AG NEXTNODE (AG 'NODEARR CDOBJ)))

(AG 'NODEARR CDOBJ))

CDOBJ)))

(AS 'NODECOUNT

(- (AG 'NODECOUNT CDOBJ) 1)

CDOBJ))))))



Dancing Links Correctness
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(defthm restore-of-remove--thm

(implies

(and (cdllp Obj)

(good-nodep n Obj)    ;; various well-formedness predicates

(not (= n (ag 'nodeHd Obj)))

(>= (ag 'nodeCount Obj) 3))

(= (CDLL_restore n (CDLL_remove n Obj))

Obj)))

ACL2 proves 160 circular doubly-linked list functional correctness 

lemmas and theorems completely automatically.



One More Thing…
Synthesis + Analysis
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Clover: Generative AI for Memory-Safe Language Specs, 
Code, and Natural Language Descriptions
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…stay tuned…



• Modern Memory-Safe Languages can make significant contributions to improved 
software assurance, with little to no degradation in performance

– Thus, formal tool providers should support memory-safe language synthesis

• In general, memory-safe languages are much easier to reason about

– Thus, formal methods researchers should aggressively support memory-safe 
languages for automated formal analysis

• Academia should teach these languages, explain their advantages, and disabuse 
students of the notion that bug-filled code is inevitable

• Industry should “skate to where the puck is going to be” and begin adoption plans for 
memory-safe languages in their products now

• Government Officials should stand behind their stated intent to move to memory-safe 
languages, and help industry and academia to realize that vision

Conclusion and Recommendations (IMHO)
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• Thanks to all our partners mentioned: 

• This work was funded in part by DARPA
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• Questions?

Thanks
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