
© 2024 Collins Aerospace.

All rights reserved.

David S. Hardin, Ph.D.
Chief Technologist, Trusted Methods
Applied Research and Technology

High-Assurance Synthesis and Analysis

Techniques for Memory-Safe Programming

Languages

This document does not include any export-controlled technical data.Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

• The views, opinions, and/or findings expressed are those of the authors
and should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government.

Disclaimer

2

This document does not include any export-controlled technical data.Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

• An emerging consensus amongst computer
science thought leaders is that memory-safe
programming language technology needs to be
adopted more broadly:

• “NSA recommends using a memory safe
language when possible.” (11/2022)

• The White House has published a report
championing the adoption of memory safe
programming languages to enhance software
security. (02/2024)

• Microsoft, Google, and Amazon have all
announced significant Rust initiatives.

• A Rust development environment has achieved
ISO 26262 and IEC 61508 certification

Motivation

3

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

• Memory-safe languages are not new

• Collins successfully used Ada in major commercial and government avionics

products in the 1980s and 1990s

• Collins used SPARK effectively on high-assurance products for the intelligence

community in the 2000s

• Recent improvements in compiler technology have made memory safety very low cost

• Additionally, novel memory ownership models (e.g, in Rust) have allowed references

to be used safely

• Development organizations have tired of continual memory errors, leading to a never-

ending parade of security vulnerabilities, despite the use of increasingly sophisticated

analysis tools

Why Memory-Safe Languages? Why now?

4

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

• In the rest of this talk, I will focus on examples of how the Trusted

Methods team and our research partners are currently moving

aggressively to support memory-safe languages in

• Formal, Automated Synthesis, and

• Formal, Automated Analysis

• of high-assurance systems

Memory-Safe Languages: Synthesis and Analysis

5

This document does not include any export-controlled technical data.Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Synthesis

6

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

• Given the advantages of memory-safe languages cited in the NSA and White
House reports, it seems natural to target memory-safe languages for software
synthesis tasks

• We are pursuing a number of formal synthesis scenarios, including:
• Code synthesis from a Model-Based Systems Engineering model
• High-assurance source-to-source transpilation
• Code synthesis from a formal specification

• NB: The seL4 Foundation is supporting memory-safe language synthesis for
a verified operating system environment by funding the development of Rust
bindings for seL4
– Full Disclosure: The author is on the Board of Governors of the seL4

Foundation

Memory-Safe Language Synthesis Technologies

7

This document does not include any export-controlled technical data.Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

• HAMR generates skeletal implementation code from architecture models in
either AADL or SysML v2

• HAMR translates architecture models into Slang, a subset of Scala
• The Kansas State team has developed an SMT-based formal analysis

capability for Slang, called Logika

• KSU developed a transpiler from Slang to “Embedded C” for the DARPA
CASE program
– With this capability, HAMR can target seL4, Linux, or a JVM-based

simulator with a flick of a switch

• For DARPA PROVERS, KSU is developing a Slang-to-Rust transpiler

Kansas State University: Code Synthesis for Model-Based Systems
Engineering with HAMR

8

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

HAMR Overview

9

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

CASE: C

PROVERS: Rust

AADL/SysML v2

Model

• Measurement and Attestation

– gathering evidence of booting system

– gathering evidence of executing system

– gathering evidence of evidence gathering

• Appraisal

– evaluating evidence of expectation

– is a system behaving as expected?

• Today - Boot and runtime appraisal

– relying party requires trust

– attestation generates evidence

– appraiser checks expectations over evidence

• Tomorrow - Systems over time

– records and ledgers for evidence

– system and local manifests for configuration

– flexible mechanism for system appraisals

Copland Verified Remote Attestation (University of Kansas)

10

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Appraiser Target

attestation

request

evidence

package

appraisal

result

Relying

Party

KU Copland Remote Attestation Protocol Synthesis
(DARPA CASE)

Remote Attestation Protocol Implementation Synthesized from Coq Spec

11

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Copland Protocol

Spec (Coq)

seL4

Microkernel

= Verified Component

Machine CodeCakeMLExtract

Linux

KU Copland Remote Attestation Protocol Synthesis
(Plan for DARPA PROVERS)

12

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Copland Protocol

Spec (Coq)

seL4

Microkernel

= Verified Component

Extract

Linux

Rust

Compiler

Machine

Code

Analysis

13

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

• A number of verification tools have been developed for Rust, including:

• Cruesot (Inria)

• Prusti (ETH Zurich)

• RustHorn (University of Tokyo/Chiba University)

• Kani (Amazon)

• Verus (Carnegie-Mellon University)

• With Verus (see 2024 HCSS talk for details), developers express proofs and
specifications using Rust syntax, allowing proofs to take advantage of Rust’s
linear types and borrow checking.

– Note: The Verus team is part of the Collins DARPA PROVERS effort.

Verification Tools for Memory-Safe Languages

14

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

• AdaCore provides a verification toolsuite, GNATprove, for SPARK

2014

– SPARK guarantees a number of important program properties,

including exception freedom, array indices stay in bounds, etc.

– SPARK also provides language support for contracts, with

preconditions, postconditions, data dependencies, control

dependencies, termination guarantees, etc.

– GNATprove frontends modern SMT solvers, such as Z3 and

CVC4

Verification Tools for Memory-Safe Languages (cont’d.)

15

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

• We desire to create high-assurance components using hardware/software co-
design/co-assurance techniques

• The high-level Architecture Models in CASE, and now PROVERS supports both
hardware- and software-based realizations

• The ability to defer and/or change the allocation of functionality to hardware or
software provides development flexibility

• Hardware provides greater tamper resistance, as well as higher performance

• Hardware/Software Co-Design is enabled by a High-Level Specification Language
(HLS), which is closer to mainstream programming languages than is a Hardware
Description Language such as VHDL or Verilog

– Most HLS’s are based on C

– However, memory-safe languages are a natural match for hardware

– Thus, we see a need for Hardware/Software Co-Assurance using a memory-safe
programming language such as Rust

Hardware/Software Co-Design and Co-Assurance

16

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

• The hardware/software verification approach we leverage
was developed by David Russinoff and colleagues

• Their approach is called Restricted Algorithmic C (RAC), as
it is based on Mentor’s HLS Algorithmic C

• RAC is extensively documented in Russinoff’s book, Formal
Verification of Floating-Point Hardware Design: A
Mathematical Approach

– In Russinoff’s text, RAC is applied to the verification of
realistic Arm floating-point designs using the ACL2
theorem prover

–RAC, and the verifications described in the book, are all
available in the standard ACL2 theorem prover
distribution

Hardware/Software Co-Assurance using Rust

17

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

• RAR currently is a simple Rust frontend to the RAC toolchain

– RAR has RAC semantics, with Rust syntax

• We have created a number of examples using the RAR toolchain,
including:

– Array-Backed Verified Algebraic Data Types: Stack, Singly-
linked list, Doubly-linked list, Circular Queue, Deque, etc.

– A DFA-based JSON lexer, coupled with an LL(1) JSON parser

– A significant subset of the Monocypher modern cryptography
suite

Restricted Algorithmic Rust (RAR)

18

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

RAR Toolchain

19

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

RAC Source

Code

ACL2

Theorem

Prover

RAC-to-ACL2

Translator

Algorithmic C

Header
Lemmas

C++ Compiler
Proofs

(.cert files)

#include

Hardware

Design Tools

Simulation and

Test

“Verification

Side”

“Design

Side”

Synthesis,

Simulation, Test,

Equivalence

Checking

RAR Source

Code

Plexi

Transpiler

Example: Knuth’s “Dancing Links” for Exact Cover Problems

20

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

(a) Doubly-linked circular list portion prior to remove operation.

(b) After remove of element Y.

(c) After restore of element Y.

Element

Y

Element

X

next

Element

Z

(b)

prev

Element

X

next

Element

Z

(a)

prev

prev

next

Element

Y

Element

X

next

Element

Z

(c)

prev

prev

next

Element

Y

TAOCP, vol 4B (2022)

• A circular doubly-linked list (CDLL) is specified in RAR as follows:

Dancing Links in RAR

21

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

const CDLL_MAX_NODE1: usize = 8191; // arbitrary

const CDLL_MAX_NODE: usize = CDLL_MAX_NODE1 - 1;

#[derive(Copy, Clone)]

struct CDLLNode {

alloc: u2,

val: i64,

prev: usize,

next: usize,

}

#[derive(Copy, Clone)]

struct CDLL {

nodeHd: usize,

nodeCount: usize,

nodeArr: [CDLLNode; CDLL_MAX_NODE1],

}

Dancing Links remove()

22

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

fn CDLL_remove(n: usize, mut CDObj: CDLL) -> CDLL {

if (n > CDLL_MAX_NODE) {

return CDObj;

} else {

if (n == CDObj.nodeHd) { // Can't remove head

return CDObj;

} else {

if (CDObj.nodeCount < 3) { // Need three elements

return CDObj;

} else {

let nextNode: usize = CDObj.nodeArr[n].next;

let prevNode: usize = CDObj.nodeArr[n].prev;

CDObj.nodeArr[prevNode].next = nextNode;

CDObj.nodeArr[nextNode].prev = prevNode;

CDObj.nodeCount = CDObj.nodeCount - 1;

return CDObj; } } } }

Translation to ACL2

23

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

(DEFUND CDLL_REMOVE (N CDOBJ)

(IF1 (LOG> N (CDLL_MAX_NODE))

CDOBJ

(IF1 (LOG= N (AG 'NODEHD CDOBJ))

CDOBJ

(IF1 (LOG< (AG 'NODECOUNT CDOBJ) 3)

CDOBJ

(LET* ((NEXTNODE (AG 'NEXT (AG N (AG 'NODEARR CDOBJ))))

(PREVNODE (AG 'PREV (AG N (AG 'NODEARR CDOBJ))))

(CDOBJ (AS 'NODEARR

(AS PREVNODE

(AS 'NEXT

NEXTNODE

(AG PREVNODE (AG 'NODEARR CDOBJ)))

(AG 'NODEARR CDOBJ))

CDOBJ))

(CDOBJ (AS 'NODEARR

(AS NEXTNODE

(AS 'PREV

PREVNODE

(AG NEXTNODE (AG 'NODEARR CDOBJ)))

(AG 'NODEARR CDOBJ))

CDOBJ)))

(AS 'NODECOUNT

(- (AG 'NODECOUNT CDOBJ) 1)

CDOBJ))))))

Dancing Links Correctness

24

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

(defthm restore-of-remove--thm

(implies

(and (cdllp Obj)

(good-nodep n Obj) ;; various well-formedness predicates

(not (= n (ag 'nodeHd Obj)))

(>= (ag 'nodeCount Obj) 3))

(= (CDLL_restore n (CDLL_remove n Obj))

Obj)))

ACL2 proves 160 circular doubly-linked list functional correctness

lemmas and theorems completely automatically.

One More Thing…
Synthesis + Analysis

25

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Clover: Generative AI for Memory-Safe Language Specs,
Code, and Natural Language Descriptions

26

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

…stay tuned…

• Modern Memory-Safe Languages can make significant contributions to improved
software assurance, with little to no degradation in performance

– Thus, formal tool providers should support memory-safe language synthesis

• In general, memory-safe languages are much easier to reason about

– Thus, formal methods researchers should aggressively support memory-safe
languages for automated formal analysis

• Academia should teach these languages, explain their advantages, and disabuse
students of the notion that bug-filled code is inevitable

• Industry should “skate to where the puck is going to be” and begin adoption plans for
memory-safe languages in their products now

• Government Officials should stand behind their stated intent to move to memory-safe
languages, and help industry and academia to realize that vision

Conclusion and Recommendations (IMHO)

27

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

• Thanks to all our partners mentioned:

• This work was funded in part by DARPA

Acknowledgments

28

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

• Questions?

Thanks

29

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

30

	Slide 1: High-Assurance Synthesis and Analysis Techniques for Memory-Safe Programming Languages
	Slide 2: Disclaimer
	Slide 3: Motivation
	Slide 4: Why Memory-Safe Languages? Why now?
	Slide 5: Memory-Safe Languages: Synthesis and Analysis
	Slide 6: Synthesis
	Slide 7: Memory-Safe Language Synthesis Technologies
	Slide 8: Kansas State University: Code Synthesis for Model-Based Systems Engineering with HAMR
	Slide 9: HAMR Overview
	Slide 10: Copland Verified Remote Attestation (University of Kansas)
	Slide 11: KU Copland Remote Attestation Protocol Synthesis (DARPA CASE)
	Slide 12: KU Copland Remote Attestation Protocol Synthesis (Plan for DARPA PROVERS)
	Slide 13: Analysis
	Slide 14: Verification Tools for Memory-Safe Languages
	Slide 15: Verification Tools for Memory-Safe Languages (cont’d.)
	Slide 16: Hardware/Software Co-Design and Co-Assurance
	Slide 17: Hardware/Software Co-Assurance using Rust
	Slide 18: Restricted Algorithmic Rust (RAR)
	Slide 19: RAR Toolchain
	Slide 20: Example: Knuth’s “Dancing Links” for Exact Cover Problems
	Slide 21: Dancing Links in RAR
	Slide 22: Dancing Links remove()
	Slide 23: Translation to ACL2
	Slide 24: Dancing Links Correctness
	Slide 25: One More Thing… Synthesis + Analysis
	Slide 26: Clover: Generative AI for Memory-Safe Language Specs, Code, and Natural Language Descriptions
	Slide 27: Conclusion and Recommendations (IMHO)
	Slide 28: Acknowledgments
	Slide 29: Thanks
	Slide 30

