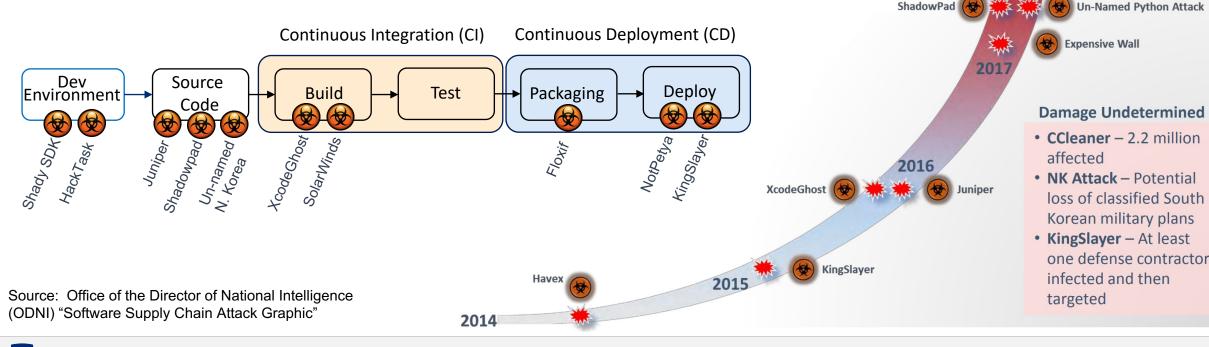


Practical Software Supply Chain Assurance

High Confidence Software and Systems Conference 2024

Leo Babun, Ph.D. Leo.Babun@jhuapl.edu


Kathleen McGill, Ph.D. Kathleen.McGill@jhuapl.edu

May 2024

Approved for Public Release

What is a Software Supply Chain Attack?

- "Compromising software code through cyber attacks, insider threats, and other close access activities at any phase of the supply chain to infect an unsuspecting customer."
- "Hackers ... compromise software and delivery processes to enable successful, rewarding, and stealthy methods to subvert large numbers of computers."

eScan

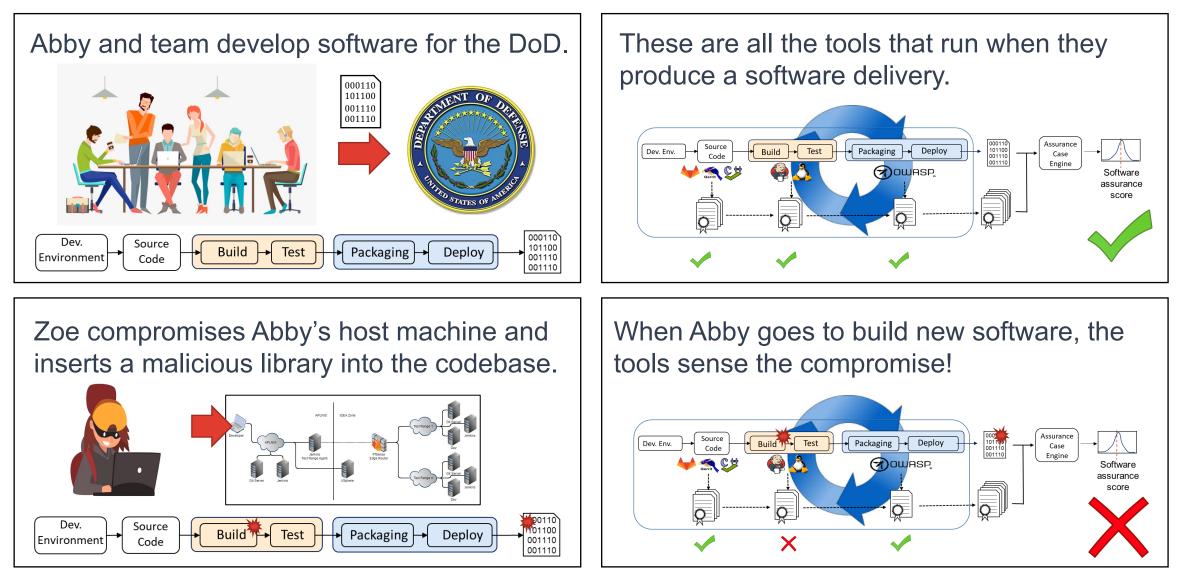
VGCA

GitHub

Un-Named Korea Attack

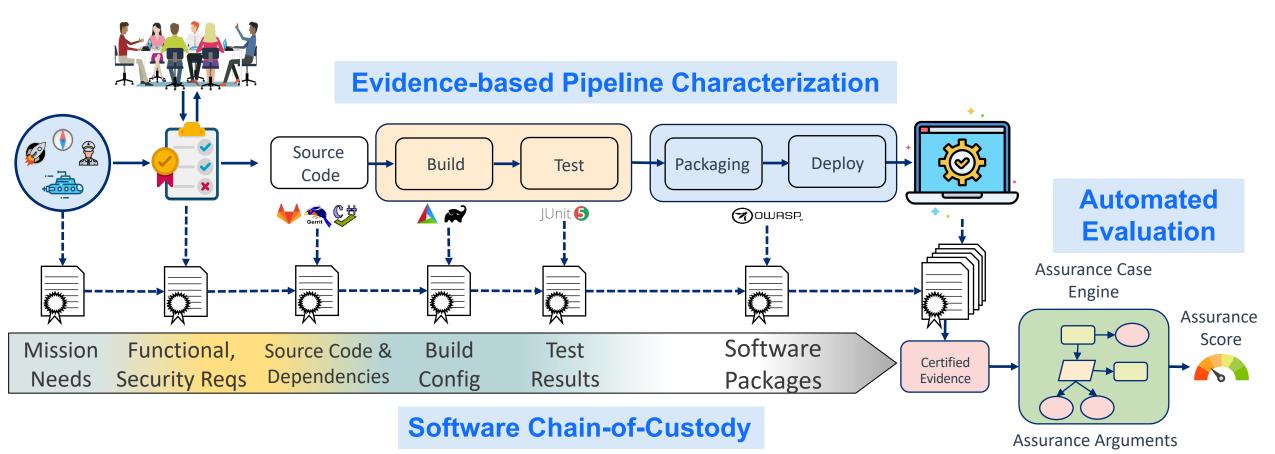
HackTask

SolarWinds


🔂 3CX

A)

ZWN

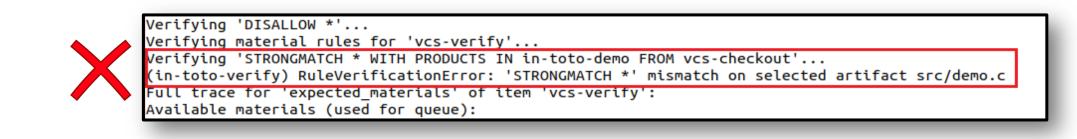

Floxif NotPetya

Practical Software Supply Chain Assurance

The CSAADE Methodology

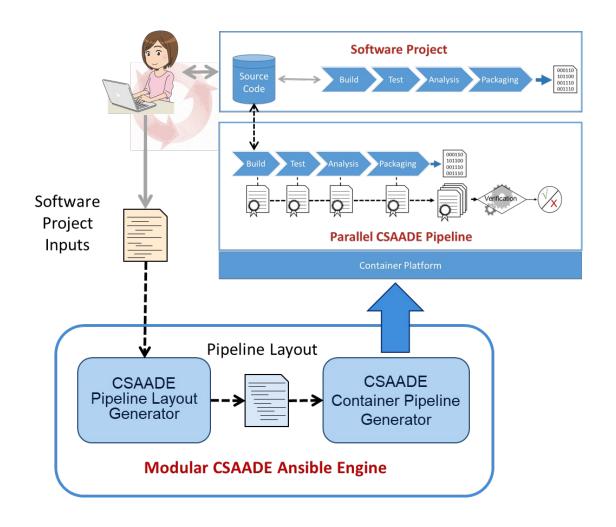
Cryptographically Secure, Automated Development Environment

A comprehensive toolchain to generate and evaluate evidence from the software supply chain automatically and establish confidence in software products.

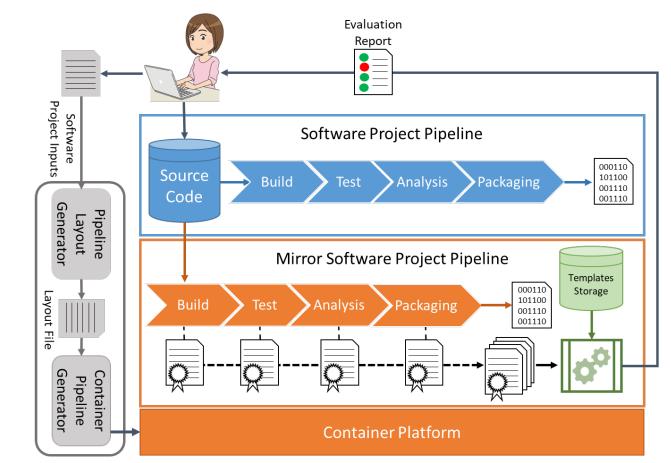

APL

Proof-of-Concept Results

- CSAADE framework detects compromised software!
 - SolarWinds-like attacks detected
- Practicality issues and developer friction
 - Manual, error prone deployment and configuration
 - Too difficult for software developers to use
 - Hard to adapt to existing projects and legacy pipelines


J∓l	centos@leob_dev1:~/csaade-demo/in-toto-demo Q = _	• 6
Verifying	'CREATE in-toto-demo/src/Makefile.am'	
Verifying	'CREATE in-toto-demo/src/demo.c'	
Verifying	'CREATE in-toto-demo/keys/centos.key.pub'	
Verifying	'CREATE in-toto-demo/keys/admin.key.pub'	
Verifying	'CREATE in-toto-demo/in-toto-demo.layout'	
Verifying	'CREATE in-toto-demo/verification/inspect-byproducts'	
Verifying	'CREATE in-toto-demo/verification/inspect-gitlog'	
Verifying	'CREATE in-toto-demo/verification/inspect-test-results'	
Verifying	'CREATE in-toto-demo/verification-coverage'	
Verifying	'CREATE in-toto-demo/README.md'	
Verifying	'MATCH verification/baseline.json IN in-toto-demo WITH PRODUCTS FROM rebaseline'	
Verifying	'MATCH verification/ima-verify IN in-toto-demo WITH PRODUCTS FROM rebaseline'	
Verifying	'CREATE in-toto-demo/verification/rebaseline.py'	
Verifying	'CREATE in-toto-demo/verification/inspect-coverage'	
Verifying	'CREATE in-toto-demo/test/Makefile.am'	
Verifying	'CREATE in-toto-demo/test/test_demo.c'	
Verifying	'CREATE in-toto-demo/test/gritty.png'	
Verifying	'DISALLOW *'	
	material rules for 'vcs-verify'	_
Verifying	'STRONGMATCH * WITH PRODUCTS IN in-toto-demo FROM vcs-checkout'	
(in-toto-	verify) RuleVerificationError: 'STRONGMATCH *' mismatch on selected artifact src/demo.c	
	e for 'expected_materials' of item 'vcs-verify':	
	materials (used for queue):	
	e.am', 'README.md', 'configure.ac', 'in-toto-demo.layout', 'keys/admin.key.pub', 'keys/	
	'run-in-toto.sh', 'src/Makefile.am', 'src/demo.c', 'test/Makefile.am', 'test/gritty.png	
	o.c', 'verification/baseline.json', 'verification/ima-verify', 'verification/inspect-by	
	ication/inspect-coverage', 'verification/inspect-gitlog', 'verification/inspect-test-re	sults',
	tion/rebaseline.py']	
	products:	
	e.am', 'README.md', 'configure.ac', 'in-toto-demo.layout', 'keys/admin.key.pub', 'keys/	
	'run-in-toto.sh', 'src/Makefile.am', 'src/demo.c', 'test/Makefile.am', 'test/gritty.png	
	o.c', 'verification/baseline.json', 'verification/ima-verify', 'verification/inspect-by	
	ication/inspect-coverage', 'verification/inspect-gitlog', 'verification/inspect-test-re	sults',
'verifica	tion/rebaseline.py']	
	· · · · · · · · · · · · · · · · · · ·	

(in-toto-venv) [centos@leob_dev1 in-toto-demo]\$


Practical Enhancements to Address Barriers to Adoption

- Automated provisioning and configuration
 - Use of Ansible and containerization for easier CSAADE configuration and deployment
- Mirror existing software development projects
 - Steps for pipeline characterization
- Template-based solution
 - Support for a variety of software development pipelines with minimal burden on developers

Technical Tasks and Challenges

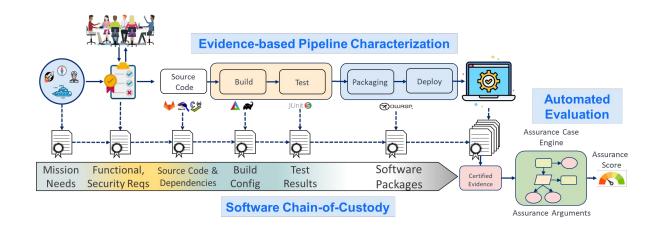
- Ansible Pipeline Layout Generator
 - Predict inputs and outputs of each step
 - Provide basis for software chain-ofcustody
 - Engineering Challenge: File explosion presents design decisions to balance assurance and scalability
- Ansible Pipeline Generator
 - Automate build of CSAADE mirror of legacy pipeline
 - Automate project access with Ansible Vault
 - Engineering Challenge: Build everything to be project-agnostic

Pilot: Integrate CSAADE with Existing Pipeline

make artifact-host-logout make[1]: Entering directory '/usr/csaade/ Logging out of live-artifactory.jhuapl.edu... a login credentials for live-artifactory.jhuapl.edu make[1]: Leaving directory /usr/csaade/ Build Delivery Successful -M in-toto-run -> rost-deploy step: Docker logout from live-artifactory... Removing login credentials for live-artifactory.jhuapl.edu in-toto-run -> List Timpani link files... total 602092 -rw-rw-r-- 1 root root 35 Aug 4 03:02 README.md -rw-r--r-- 1 root root 24139493 Aug 11 01:05 assurance_1.5dd5421a.link -rw-r--r-- 1 root root 24652099 Aug 11 01:10 assurance_2.5dd5421a.link -rw-r--r-- 1 root root 15939253 Aug 11 00:31 build_1.5dd5421a.link rw-r--r-- 1 root root 21170220 Aug 11 00:34 build_2.5dd5421a.link -rw-r--r-- 1 root root 23434861 Aug 11 00:34 build_3.5dd5421a.link rw-r--r-- 1 root root 781512 Aug 11 00:22 clone checkout.5dd5421a.link -rw-r--r-- 1 root root 645061 Aug 11 00:23 clone_verify.5dd5421a.link -rw-r--r-- 1 root root 24119104 Aug 11 01:10 package 1.5dd5421a.link -rw-r--r-- 1 root root 24262435 Aug 11 01:27 package_2.5dd5421a.link rw-r--r-- 1 root root 24119415 Aug 11 01:28 post_deploy_1.5dd5421a.link rw-r--r-- 1 root root 499173 Aug 11 00:23 pre_build_1.5dd5421a.link -rw-r--r-- 1 root root 557460 Aug 11 00:24 pre build 2.5dd5421a.link -rw-r--r-- 1 root root 26927083 Aug 11 00:41 test_1.5dd5421a.link -rw-r--r-- 1 root root 25441296 Aug 11 00:58 test_10.5dd5421a.link rw-r--r-- 1 root root 23682598 Aug 11 00:58 test_11.5dd5421a.link -rw-r--r-- 1 root root 23676541 Aug 11 00:59 test_12.5dd5421a.link -rw-r--r-- 1 root root 23683596 Aug 11 01:00 test_13.5dd5421a.link -rw-r--r-- 1 root root 23744693 Aug 11 01:00 test_14.5dd5421a.link -rw-r--r-- 1 root root 23743866 Aug 11 01:01 test_15.5dd5421a.link -rw-r--r-- 1 root root 23698464 Aug 11 01:02 test_16.5dd5421a.link -rw-r--r-- 1 root root 23918360 Aug 11 01:03 test_17.5dd5421a.link -rw-r--r-- 1 root root 24127753 Aug 11 01:04 test_18.5dd5421a.link -rw-r--r-- 1 root root 23657593 Aug 11 00:41 test 2.5dd5421a.link -rw-r--r-- 1 root root 23657620 Aug 11 00:42 test_3.5dd5421a.link -rw-r--r-- 1 root root 23717100 Aug 11 00:44 test_4.5dd5421a.link rw-r--r-- 1 root root 23776968 Aug 11 00:47 test_5.5dd5421a.link -rw-r--r-- 1 root root 23665755 Aug 11 00:47 test_6.5dd5421a.link rw-r--r-- 1 root root 23662272 Aug 11 00:48 test_7.5dd5421a.link 00t 100t 23001502 AUg 11 00:49 test 8.500542 rw-r--r-- 1 root root 23720982 Aug 11 00:49 test_9.5dd5421a.link in-toto-run -> pipeline completed. All evidence files generated...Done oot@241c52e2f113:/usr/csaade#

- APL Internal Maven-based Java development project
 - Uses npm package manager
 - Docker-based build and testing
 - Handles sensitive credential information
 - Several project and build dependencies
- Ansible engine automates end-to-end process
 - Collects evidence and validates software chain-of-custody
- Software chain-of-custody and supply chain evaluation for a project NOT designed for CSAADE
- Ansible automation and containerized architecture drastically simplify deployment

Pilot Success Metrics


Key Metric	Result(s)			
Project Developer Load	 Total commitment: 5 hours Limited set of inputs required to replicate the entire legacy pipeline 			
Legacy Pipeline Characterization	 CSAADE configuration file generated in seconds (~22K of lines) 			
Automated Provisioning	 Total time cut from hours to minutes Mirror pipeline deployed in minutes 			

We can deploy a CSAADE pipeline and get practical, adaptive software assurance without derailing primary mission objectives.

Conclusions

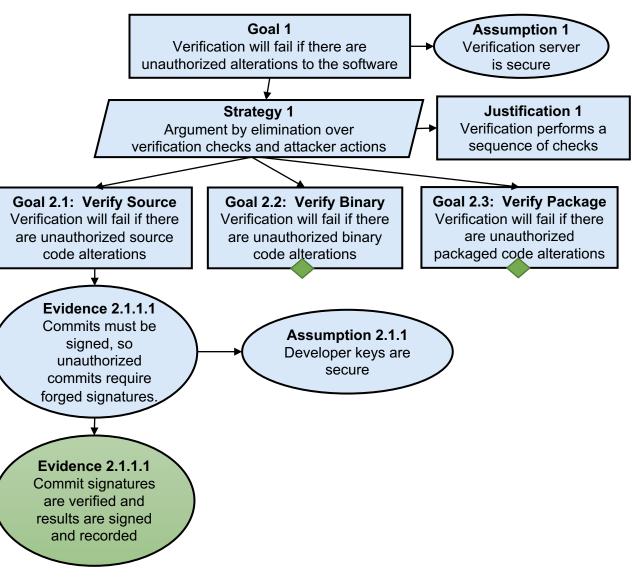
- CDAADE uses sensing capabilities to fully characterize the software, how it was produced, and the underlying platform that hosts the development pipeline
- The cryptographic software-chain-of-custody provides the necessary rigor to protect the integrity of the collected evidence and the software supply chain
- CSAADE easily integrates with legacy pipelines and takes the burden off the developers

APL wants to work with the community to advance research and adoption of software supply chain assurance.

JOHNS HOPKINS APPLIED PHYSICS LABORATORY

What Makes CSAADE Different?

- Sensors span the software development pipeline. Every sensor contributes to the final assurance score
- Platform integrity sensors included


Sensor	Evidence	Phase	Threat Addressed	
GitLab	Commit signatures	Dev	 Malicious source submission by 	
			unauthorized actor	
CLOC	Source Lines of Code (SLOC)	Dev	 Malicious source submission with 	
	Number of files		stolen credentials	
Cppcheck	• List of source code warnings and	Dev	Vulnerable source submission by well-	
	errors		intentioned developer	
CodeDNA	Binary fingerprint	Dev, Build	 Malicious source submission with 	
	Malware similarity score		stolen credentials	
gcov	Test source code coverage	Dev	Vulnerable source code submission by	
			well-intentioned developer	
Integrity Measurement Architecture (IMA)	Hashes of critical files	Dev, Build,	 Dev, Build, Test, or Package 	
	Hashes of booted software	Test, Package	environment compromise	
Linux Kernel Integrity Measurer (LKIM)	 Linux Kernel structure and data 	Dev, Build,	 Dev, Build, Test, or Package 	
•	values	Test, Package	environment compromise	
Tracer	 Trace of syscalls triggered by the 	Dev, Build,	 Dev, Build, Test, or Package 	
	build process	Test, Package	environment compromise	
OWASP Dependency Check	List of known dependency	Dev, Package	Known vulnerable dependencies	
	vulnerabilities			

*Sensors partially or fully integrated in prototype are highlighted in blue.

What Makes CSAADE Different?

- Assurance case: a logic tree with a top-level claim decomposed into supporting claims
- Software Supply Chain Assurance Case
 - Decompose by software pipeline stages
 - Threat model informs risks
 - Claims (or assumptions) about source code integrity, code characteristics, and development environment
 - Lowest level claims supported by evidence
- Assurance arguments are expected to change over time based on specific sensors used and known vulnerabilities.
 - Automated, template-based assurance case generation adds flexibility and prevents from having fixed arguments
- ACCELERATE computation engine processes software supply chain assurance case to provide a software assurance score.

Future Work

- Enterprise integration with key management
- Integrate additional sensors to collect evidence supporting different threat models and software programming languages
- Explore AI analysis to provide security recommendations
- Security architecture improvements