
Practical Software Supply Chain Assurance
High Confidence Software and Systems Conference 2024

Leo Babun, Ph.D.
Leo.Babun@jhuapl.edu

Kathleen McGill, Ph.D.
Kathleen.McGill@jhuapl.edu

May 2024

Approved for Public Release

mailto:Leo.Babun@jhuapl.edu
mailto:Kathleen.McGill@jhuapl.edu

3CX

SolarWinds
GitHub
VGCA

eScanWhat is a Software Supply Chain Attack?
• “Compromising software code through cyber attacks, insider threats,

and other close access activities at any phase of the supply chain to
infect an unsuspecting customer.”

• “Hackers … compromise software and delivery processes to enable
successful, rewarding, and stealthy methods to subvert large
numbers of computers.”

15 May 2024 2

Ju
ni

pe
r

Sh
ad

ow
pa

d
Un

-n
am

ed

N.
 K

or
ea

Xc
od

eG
ho

st

Source
Code

Dev
Environment

Continuous Integration (CI)

Build Test Packaging Deploy

Continuous Deployment (CD)

Sh
ad

y
SD

K
Ha

ck
Ta

sk

So
la

rW
in

ds

Fl
ox

if

No
tP

et
ya

Ki
ng

Sl
ay

er

Source: Office of the Director of National Intelligence
(ODNI) “Software Supply Chain Attack Graphic”

Approved for Public Release

Practical Software Supply Chain Assurance

15 May 2024 3Approved for Public Release

Abby and team develop software for the DoD. These are all the tools that run when they
produce a software delivery.

Zoe compromises Abby’s host machine and
inserts a malicious library into the codebase.

When Abby goes to build new software, the
tools sense the compromise!

000110
101100
001110
001110

The CSAADE Methodology
Cryptographically Secure, Automated Development Environment

15 May 2024 4

A comprehensive toolchain to generate and evaluate evidence from the software
supply chain automatically and establish confidence in software products.

Approved for Public Release

Assurance Case
Engine

Certified
Evidence

Source
Code Build Test Packaging Deploy

Source Code &
Dependencies

Functional,
Security Reqs

Build
Config

Test
Results

Software
Packages

Mission
Needs

Assurance
Score

Automated
Evaluation

Evidence-based Pipeline Characterization

Software Chain-of-Custody Assurance Arguments

Proof-of-Concept Results
• CSAADE framework detects compromised

software!
- SolarWinds-like attacks detected

Approved for Public Release 15 May 2024 5

• Practicality issues and developer friction
- Manual, error prone deployment and configuration
- Too difficult for software developers to use
- Hard to adapt to existing projects and legacy

pipelines

Practical Enhancements to Address Barriers to Adoption

15 May 2024 6

• Automated provisioning and
configuration
- Use of Ansible and containerization for

easier CSAADE configuration and
deployment

• Mirror existing software development
projects
- Steps for pipeline characterization

• Template-based solution
- Support for a variety of software

development pipelines with minimal
burden on developers

Approved for Public Release

Technical Tasks and Challenges

15 May 2024 7

• Ansible Pipeline Layout Generator
- Predict inputs and outputs of each step
- Provide basis for software chain-of-

custody
- Engineering Challenge: File explosion

presents design decisions to balance
assurance and scalability

• Ansible Pipeline Generator
- Automate build of CSAADE mirror of

legacy pipeline
- Automate project access with Ansible

Vault
- Engineering Challenge: Build everything

to be project-agnostic

Approved for Public Release

Pilot: Integrate CSAADE with Existing Pipeline

15 May 2024 8Approved for Public Release

• APL Internal Maven-based Java development project
- Uses npm package manager
- Docker-based build and testing
- Handles sensitive credential information
- Several project and build dependencies

• Ansible engine automates end-to-end process
- Collects evidence and validates software chain-of-custody

• Software chain-of-custody and supply chain evaluation
for a project NOT designed for CSAADE

• Ansible automation and containerized architecture
drastically simplify deployment

Pilot Success Metrics

15 May 2024 9

Key Metric Result(s)
Project Developer Load • Total commitment: 5 hours

• Limited set of inputs required to replicate
the entire legacy pipeline

Legacy Pipeline Characterization • CSAADE configuration file generated in
seconds (~22K of lines)

Automated Provisioning • Total time cut from hours to minutes
• Mirror pipeline deployed in minutes

Approved for Public Release

We can deploy a CSAADE pipeline and get practical, adaptive
software assurance without derailing primary mission objectives.

Conclusions

Approved for Public Release 15 May 2024 10

• CDAADE uses sensing capabilities to fully characterize the software, how it was produced, and
the underlying platform that hosts the development pipeline

• The cryptographic software-chain-of-custody provides the necessary rigor to protect the integrity
of the collected evidence and the software supply chain

• CSAADE easily integrates with legacy pipelines and takes the burden off the developers

APL wants to work with the community to advance research and adoption of
software supply chain assurance.

What Makes CSAADE Different?

Sensor Evidence Phase Threat Addressed
GitLab ● Commit signatures Dev ● Malicious source submission by

unauthorized actor
CLOC ● Source Lines of Code (SLOC)

● Number of files
Dev ● Malicious source submission with

stolen credentials
Cppcheck ● List of source code warnings and

errors
Dev ● Vulnerable source submission by well-

intentioned developer
CodeDNA ● Binary fingerprint

● Malware similarity score
Dev, Build ● Malicious source submission with

stolen credentials
gcov ● Test source code coverage Dev ● Vulnerable source code submission by

well-intentioned developer
Integrity Measurement Architecture (IMA) ● Hashes of critical files

● Hashes of booted software
Dev, Build,

Test, Package
● Dev, Build, Test, or Package

environment compromise
Linux Kernel Integrity Measurer (LKIM) ● Linux Kernel structure and data

values
Dev, Build,

Test, Package
● Dev, Build, Test, or Package

environment compromise
Tracer ● Trace of syscalls triggered by the

build process
Dev, Build,

Test, Package
● Dev, Build, Test, or Package

environment compromise
OWASP Dependency Check ● List of known dependency

vulnerabilities
Dev, Package ● Known vulnerable dependencies

• Sensors span the software development pipeline. Every sensor contributes to the final assurance score
• Platform integrity sensors included

*Sensors partially or fully integrated in prototype are highlighted in blue.

Approved for Public Release 15 May 2024 12

What Makes CSAADE Different?
• Assurance case: a logic tree with a top-level

claim decomposed into supporting claims
• Software Supply Chain Assurance Case

- Decompose by software pipeline stages
- Threat model informs risks
- Claims (or assumptions) about source code integrity,

code characteristics, and development environment
- Lowest level claims supported by evidence

• Assurance arguments are expected to change
over time based on specific sensors used and
known vulnerabilities.
- Automated, template-based assurance case

generation adds flexibility and prevents from having
fixed arguments

• ACCELERATE computation engine processes
software supply chain assurance case to
provide a software assurance score.

Goal 1
Verification will fail if there are

unauthorized alterations to the software

Assumption 1
Verification server

is secure

Strategy 1
Argument by elimination over

verification checks and attacker actions

Justification 1
Verification performs a

sequence of checks

Goal 2.1: Verify Source
Verification will fail if there
are unauthorized source

code alterations

Goal 2.2: Verify Binary
Verification will fail if there
are unauthorized binary

code alterations

Goal 2.3: Verify Package
Verification will fail if there

are unauthorized
packaged code alterations

Evidence 2.1.1.1
Commits must be

signed, so
unauthorized

commits require
forged signatures.

Assumption 2.1.1
Developer keys are

secure

Evidence 2.1.1.1
Commit signatures

are verified and
results are signed

and recorded

15 May 2024 13Approved for Public Release

Future Work

Approved for Public Release 15 May 2024 14

• Enterprise integration with key management
• Integrate additional sensors to collect evidence supporting different threat models and software

programming languages
• Explore AI analysis to provide security recommendations
• Security architecture improvements

