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WHY PROPERY DRIVEN CONTINUOUS ASSURANCE?

[Traditional Means of Compliance]
Commercial

System Development ~ Certification
Vparsin | Aetospace

) DO-178C | Software

Tool Qual
DO-330

DO-333

Safety

ARP4761/
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Artifacts are just the tip of the iceberg
A large part of assurance lies within the hidden activities
that surround the artifact production

~

Hard to Judge: Quality of Compliance = Degree of Confidence

-

Implicit Prescription Rationale to Designers vs Dearth of
Design Insights for Regulators
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[Property Driven Continuous Assurance|

Assurance Case (TA3)
CLARISSA—

HO, SRI/UTD Tools

Safety + Secrurgy cases

=

Evidence Generation (TA1)

DesCert — SRI/HON/UW Tools

.

DesCert Vision:
Explicate Hidden Iceberg



SOFTWARE DESIGN FOR EFFICIENT ARGUMENTS

(Definition)

A

Refinement

7

[ Argument:

Evidence

Evidence-based Assurance

» Arguments: parent-claims refinements to sub-
claims, & side-claims backed by supporting
evidence that demonstrates that software
faithfully implements the intended behavior

» Repeatable argumentation backed by reusable
assurance sub-cases called Theories with own
supporting evidentiary obligations

» Good argument should make it easy to identify
and fix fallacious reasoning steps
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Making Arguments Efficient

Efficient argument is one whose flaws, if any, can be
easily identified by a skeptic

Good designs expands the falsification space for the
skeptic

Efficiency is measured by the amortized cost of

falsification e.g. Partitioned RTOS, using memory-safe
hardware and type-safe languages

Inefficient arguments due to imprecise claims,
flawed/irrelevant evidence, complex arguments,
unfalsifiable assumptions, invalid reasoning....




EVIDENCE GENERATION TOOLS FOR ASSURANCE

Software Design for Efficient Argument

Ontology

Architecture

]
Tools

Models
Languages

* Precise Claims based on Ontologies

* Valid models and assumptions

* Reusable design tools, “Safe” Languages
 Architectural separation of concerns

* Rigorous chains of reasoning and evidence

Development Phases

: Formal Analysis and Proof
esting

System-Level
Requirements
Compliance

Review - Tool: Sally
Authoring, Architecture
SW High-Level

Conformance
Tool: CLEAR Requirements

Review and

Safety (hazards),
Security (vulnerability)

Con5|stency
Tools: Sally, Text2Test
- Compliance

SW Low-Level > RequjrementsAccuracy,

: Consistency
Requirements Tool: Text2Test

- Compliance

Tools: Checker Framework
Randoop, Daikon, SeaHorn
Source Code > Accuracy, Consistency,
Runtime Safety, Security
Legend:
Assurance Objectives are in green

L denotes development activity.

Object Code denotes verification activity,
evidence generated, traceability

Compliance,
Robustness
Tool:Text2Test




PROPERTY DRIVEN SOFTWARE ASSURANCE

Requirements: Properties: What the system ought to do/not to do
Specific, individual functional

behaviors the system shall do

Safety Liveness Invariants

Specification for design and Something bad will never Something good will eventually = Desired system constraints

Purpose
o implementation happen (bounded time) occur
Verificati . . . . ) .
A;::f:::c:m Testing Model Checking Testing and Model Checking Testing and Model Checking
If the remaining battery power is = Once the system is in The system shall reach its Emergency landing is always
critically low, the system shall insufficient battery state, destination in normal battery initiated when/after
Exemplars  initiate emergency landing then system shall never state (within x secs) systems reached insufficient

transition back to normal
battery state

\ J
\ Y J Y

Derive Tests to execute
on Implementation

battery state

Model-check Properties on Requirements Model
(proxy for checking on implementation)

Capture both Requirements and Properties
» Properties have broader scope and context than individual requirements
+ Capturing both increases confidence in the validity of requirements
» Property holds on the aggregated behavior of individualized requirements

NASA Formal Methods (NFM) symposium 2022 paper: “Requirements-Driven Model
Checking and Test Generation for Comprehensive Verification”

EPS Application
Context Specific
System Y 7| Property

Requirements | Architecture; Specification
Hazards (CLEAR)

<

Convert to
SSM

Synthesis
Model (SSM) 5

1. Heater is always turned on at temp < low thresh

Tool: SALLY 2. Heater is always turned off at temp > high thresh
M°d?' Property | 4 passed
Checking Results 2. Passed
T — 3. Indeterminate
Convert to i _
Sally Model Requirements are

Constrained
Language
Enhanced
Approach to
Requirements

Software
Requirements
Specification
(CLEAR)

Tool: Text2Test

Generic

Formal Methods
Based Property
Verification Track

Test
Generation

Tool: Text2Test

Formal Test
Verification Track

I "Req 1":

While HVAC_Mode is 'Heat Off', when room_temp is
less than set_point_low_threshold degF, then
Thermostat shall set HVAC_Mode to 'Heat On’.

ID “"Req_2":

While HVAC_Mode is 'Heat On', when room_temp is
greater than set_point_high_threshold degF, then
Thermostat shall set HVAC_Mode to 'Heat Off’.

ID "Req_4":

While HVAC_Mode is 'Heat Off’, Thermostat shall
set Display_Indicator to 'White'.

Property
Specification
CLEAR

Software Design, Software
Implementation Code
(manual) (manual)

Tool: Text2Test

2. Consistent
3. Verifiable

Requirements
Analysis

— 4. .
‘ IPliEipEsy 1. Passed

Binary
Executable

Object Code
(built on platform),

Tool: Text2Test

ColumnName
DataType
Initialize
Comment
Initialize
Vector
Vector
Comment
Initialize
Vector
Vector
Comment
Initialize
Vector
Vector
Comment
Initialize
Vector

end

| Test Vectors |—>Test Execution|—»

Test Oracle:

Test Oracle

Test Oracle

Test Oracle:

Pass/Fail
| Results

ColumnContent  RepetitionCount Input:1

Resu!t}sﬁ 2. Passed

3. Passed

Test Case: T GT1_GT: Pass
| TestCase: TGT1_LT: Pass

Input:2 Output:1
room_temp set_point Display_Indicator
float32 float32 uint32

GT1_GT TestCase: TGT1_GT:a>b boundary valu

1 66.989 75 X
1 61.509 60
GT1LT

set up ste
1 test step
Test Case: TGTI_LT: a<b boundary value

1 66.989 75 X
1 74.489 7
State_HeatOn TestCase: T Reach State Heat On
1 0.00 50 2
1 49 50 2
State_HeatOff TestCase: T Reach State Heat Off
1 a9 50 1

Belt and Suspender Hybrid Verification Approach: Testing & Formal Methods



SMART REQUIREMENTS ENGINERING USING GEN-AI

Need to address Gen-Al issues:
Lack of system and domain understanding.
Outputs are not always reliable.

Gen-Al Assisted Req. Creation Need human review.
Low-cost Few-Shot Learning of Sys./Domain Cost and usability
Sources: Honeywell’s Proven DO-178C Qualified Tool Chain
- legacy docs.
- customer inputs Artifacts
- req. in other language -y -
5 3 CLEAR IDE Text2Test / HILIiTE ]
|
Internal Model .
Formal X > -
Dlensf:r?:t?clm Requirements @
of Regs. | r-> @ % -1 (CLEAR) jReq.
T Analyses
6 J |
l
|
|

Formal analyses-supported review (rule out logic errors, conflicts, gaps, etc.)




SMART REQUIREMENTS ENGINERING USING GEN-AI

Requirement
Categories/Templates
(-]
o= e validation @ e e e — - - -
g |
| .
A validation . !
. Inf || T T T Requirement
nforma . . e .
w Description Eng-l g > New =EAR Edior | Text2Test
User Assistant Requirement || - R S Tool
7y ___\_/\{ip_d?yv___ 1 o m— S e Honeywell’s
System : e | | —— Proven DO-178C
' 5 : lified Tool Chai
Prompt iteration/ Inputs/Outputs : - I Tests Qualified Tool Chain
correction
v
LLM Agnostic Layer
LLM




ONTOLOGIES SYTEMATIZATION: SAFETY & SECURITY

Architecture
Touch Points

\
.
1

Attacker , Claim
. scope .
X - /« d1ec*lares
°'eatesl ) / * Architectural design protection (partitioning,
Access 1 enclaves, encryption, secure DDS, resource/
Vectors Ve 211 mitigatedBy Property | timing guarantees)
- 1 * Requirements/design analysis, model check
Risk uses demonstrates properties, graph semantics analysis
Event * Protection via type safety and ontic-type-
Property based static code analysis
/\ 1\ Result — « Testing: requirements-based, threat-based
%JpponedB\
Loss Threat Threat
Event Event triggers | Condition Architectural Analysis Analysis | E.g., Checker
Controls Output ACthlty Framework
isManifestedBy L Functional execution
e Controls
Hazard 1. - . ;
mitigatedBy| \scope ///l
1. ¥ Legend
. ?;S::epcct)ﬁ:tes ‘:| Security related
l:l Safety related
|:| Activity

Threat ___________[EntyPoint _____JRisk ________________|mitigation

Radler Certified Build/Attestation

Malicious Code

Malicious Inside Actor

Loss of Information Integrity

Loss of Comm. integrity

Access Control Violation

Bad/Unexpected Input

Build Process

Untrusted Code

Tampering

Communication layer

Architecture

Unchecked input ports

Failure, Unauthorized Access

Failure

Failure, Unauthorized Access

DosS, Failure, exfiltration/infiltration

Infiltration, Exfiltration, Jamming

Failure/Remote Code Execution

Radler Security Enclaves

Radler Security Enclaves
Radler/SROS2 protections
Radler config., Ontic analysis

Ontic Type Analysis

ollection

Ontological categories for modeling of:

1. Threats: Bypassing access control/ input
validation, race conditions, timing attacks,
phishing, privilege escalation, malicious code,
remote code execution

2. Vulnerabilities: Null dereference, SQL
injection, Buffer overflow

3. Controls: Physical security, Access control,
Monitoring, Reporting, Authentication

4.  Risk/loss events: Loss of Confidentiality,
Integrity, Availability, Safety;,..

5. Architecture/Touch (entry) Points: Sensors,
Actuators, Communication channels, Files,
Hardware, Software Components etc.

Radl Architectural Model

Collection of references to Arch. Elements
Architecture
Touch Points

;#;r}function

FUNCTION
(core)

1.*

SieIEd| function

(core)

1.1 1.
&
source | | destination é{b *
& S
&
Physical N

Lx
1. =
‘ = Virtual -
utilize: ommupitatesOver
[izEEE Authenticatedand/or Channel

Encrypted mesdsges
1.+
conten /7

1.*

stination

Software
Component

Security content
Perimeter 1.

Security Enclave
(time, space, network partition)

Safety DAL: DAL A/B/C/D/E
Security Assurance Level: SAL 1/2/3/4

Architéclure
Touch Points 8



END-TO-END, TOP-DOWN EVIDENCE GENERATION

—

System P S - attack . [Threat Security P_roperty Analysis
ecurity e \;cce?—-" Event All exploitable
ConOps Model : oi ST vulnerabilities are
Development . ‘exploits . mitigated by properties
System & Software 7 (S vulnerability Securlty with satisfied results
System Architecture CLEARIDEA @ 7, Model Vulnerability touchpoint
Requirements o itigatedb ode ulnerability touchpoints
‘ g y
: 1t /. Control must be subset of those of
& Architecture b / ;
= it L Properties, & Controls
evelopment Property | support: Analysis Ontic
(SRAD) Result j«———"Output [* [Analysis
7 Checker Static Code/Ontic Analysis

* No resource leakage
* No tainted data use
* No nullness

Framewor

System

.
Requirements * No remote code
: Generic @ @ execution
s | Logger, Log4),
property b I P ; Moﬁﬁgﬁrgé’fcwe Architecture Analysis
f Radler 2 @ <:>@ (Java) * Bounded latency for
- : . Sl messages
SW High-Level W Archltect_ure Lo S Ll + Communication messages are
Requirements - Analysis fCLEAR IDE/ - delivered in order
Code (C+) * Non-interference, partition
: ) guarantees
P code
Radler Build
Generic
Property [ \
[Test Oracles E— Claims Model | Theory
i / Coverage
Requirement Sets B usesTheory
1-4 declares ——
| Execution Result | |
. ZCLEAR IDE;
mitigates Safety Property Analysis
Specific | * Copter always terminates flight within
Property range at pre-defined waypoint
Copter ensures communication of location Legend




EVIDENCE INTEGRATED FOR CONTINUOUS ASSURANCE

Define PropertyResult_NoReslLeak_SW_Logdj as instance of type DecisionPropertyResult

Assign PropertyResult NoResleak SW Logdj.descri s as
Assign PropertyResult_NoReslLeak_SW_Logdj.decis Outcome as JETISERRTLN -

: j _ - - Assurance Generation (AG
Rosien BropernSngats Mobsiank ALLoutl- et eton o D v Nk Lot /Evidence Artifacts\ (AG)
: ork * Requirements . CLARISSA -
‘ * Code w/wo Annotations HON/Adelard/SRI/UTD Tools

* Tests, Analysis, V&V artifacts
Define PropertyResult_NoResLeak_SW_Logdj as insta f type DecisionPropertyResult. * Architecture Specs Safety+securlty cases
Assign PropertyResult_NoReslLeak_SW_Logdj.descriptions as t t of . Design
Assign PropertyResult_NoResLeak_SW_Logdj.decisionOutcome as JISTISERSTIN. « Model
Azzign PropertyResult NoResleak SW Logdj.demonstrates as Property NoResleak SW Logdj. oaels
Assign PropertyResult_NoResLeak_SW_Logdj.supportedBy as set {PRE_NoResLeak_SW_Logdj, CTRL . ReSUItS, Logs
Assign PropertyResult_NoReslLeak_SW_Logdj.wasGeneratedBy as ANALYSIS_CheckerFramework_2. « Documents Reports
’

Assign PropertyResult_NoReslLeak_SW_Logdj.wasGeneratedBy as ANALYSIS_Checkerframework_1.

Figure 44: Scenario 2 update to Checker Framework Analysis Results of the Code Changes

Radler cwvidence Curation (EC

“Meta” Evidence - GE Tools

Text2Test

defeater

Checker

Evidence Verified Evidence
Framework Ontology,'£ RAC_K Revository
(ontic type ngestion Packa i F epository (g'tht b?)
Existing Mmeeemd |
o , . \NodegroupQuery Jll Rdded Evidence URI Linkj
Versioning, Attestation Versioning, Attestation

Workflows : Evidentiary Claims = Evidence in Datalog

§ I S -
g 0-178C DO-326A
demo_workflow(Input) :- ( E B) Properties (OP

system_modeling(Properties, ArchitectureSpec, SecuritySpec, BaseProcessProvData, RADLProvData, CodeFiIesProxy,- C
RadlFiles, RequirementProvData, RequirementProperties, RequirementPropertyFiles, RequirementFiles, 3 ga
(=]

ArchControlPropertyResults),
checkerFramework_type_checking(Properties, ArchitectureSpec, CodeFilesProxy, CFPropertyResults),
radler_radIl_analysis(Properties, ArchitectureSpec, RadlFiles, RadlerPropertyResults),
text2Test_requirement_analysis(ArchitectureSpec, BaseProcessProvData, RequirementProperties,
RequirementProvData, RequirementPropertyFiles, RequirementFiles, ReqAnalysisPropertyResults),
securityAnalysis_and_ingestion_creation(Properties, ArchitectureSpec, SecuritySpec, BaseProcessProvData,
RADLProvData, RequirementProvData, RequirementProperties, ArchControlPropertyResults, CFPropertyResults,
RadlerPropertyResults, ReqAnalysisPropertyResults, IngestionPackageFiles, IngestionPackageManifest),
rack_ingestion(/ngestionPackageFiles, IngestionPackageManifest, SuccessOrError, ErrorMsg, Handle, Diff), ]- EC
update_asce_evidence_dnr(Diff, AsceFile),

detect_property_violation(Diff, PropertyViolated), AG
update_asce_with_defeaters(PropertyViolated, AsceFile). J

G
G

10







SySte m SRAD

ConOps

System & Software

System Architecture
Requirements
& Architecture >
Development

System

Requirements

SW High-Level
Requirements

Requirement Sets
1-4

ZCLEAR e[ ¢

Radler

- / attack Threat
S;C;L:eltly e 599‘?.%?" Event Text2Test
Development xploits :
Security

> vulnerability

el
/‘ Control

Security Property Analysis
All exploitable
vulnerabilities are
mitigated by properties
with satisfied results

Vulnerability touchpoints
must be subset of those of

_/A

rchitecture
Analysis

Property
Result

_| Test Oracles
/ Coverage

_ Properties, & Controls

Static Code/Ontic Analysis
* No resource leakage

* No tainted data use

* No nullness

* No remote code
execution

Architecture Analysis

Bounded latency for
messages

Communication messages are
delivered in order
Non-interference, partition
guarantees

demons su ort*’/ - Ontic
trates Result |4 A(S‘St'gﬁ'ts “—|Analysis
\ / Checker
Arch\i\tecture Touch Points Framewor
d \
1w Gw)| - !
) A P Logger, Log4J,
N ““&lMonitor, BB3 Code
|@ ! (Java) .
Architecture Model,\ji\;\_\i ffffffffffffffffffffffffffffffffffffff > .
fCLEAR IDE/ 4| Component
Code (C++) .
code
Radler Build
Claims Model
Executable

N

| Theory

TusesTheory
1

N
- Tests

| — )

N Test Test
Execution Result

declares
Property l¢

Claim

CLEAR IDE

[

Safety Property Analysis
* Copter always terminates flight within

Property

Result

J range at pre-defined waypoint

Copter ensures communication of location

Legend /TooT 7



Context

System

\
L --
|
I

Requirements,| Architecture;

’
/
’

Hazards

Constrained

Language Software
Enhanced Requirements
Approach to Specification
Requirements (CLEAR)

\Toolg Text2Test

Attt ] Tool: SALLY
Specific
> Model
---------------- Property .
Specification Checking
(CLEAR)
Semantic i
Convert to >| Synthesis Sally Model
SSM Model (SSM)

-

Tool: Text2Test

Formal Methods
Based Property
Verification Track

Formal Test
Verification Track

A

Generic
1| Property

Specification

(CLEAR

Test

Generation

Requirements
Analysis

Tool: Text2Test

Tool: Text2Test

/

Software Design,
Implementation
(manual) i

\ 4

ID "Req_1":

While HVAC_Mode is 'Heat Off', when room_temp is

less than set_point_low_threshold degF, then
Thermostat shall set HVAC_Mode to ‘Heat On”’.

ID "Req 2":

While HVAC_Mode is 'Heat On', when room_temp is

Thermostat shall set HVAC_Mode to 'Heat Off~’.
ID "Req_4":

While HVAC_Mode is 'Heat Off’, Thermostat shall
set Display_Indicator to 'White'.

greater than set_point_high_threshold degF, then

—»l Test Vectors ]—'Test Execution\—>

ProPerty 1. Passed

2. Passed
3. Indeterminate

Results

[ Requirements are
1. Accurate

2. Consistent
3. Verifiable

4, ...

(1. Heater is always turned on at temp < low thresh
2. Heater is always turned off at temp > high thresh

Property
Results

Pass/Fail
Results

1. Passed
2. Passed
. 3. Passed

Test Case: T GT1_GT: Pass
Test Case: T GT1_LT: Pass

- Binary ColumnContent RepetitionCount Input:1 Input:2 Output:1
SOftware E t bl ColumnName room_temp set_point Display_Indicator
COde > X.ecu able DataType float32 float32 uint32
e ObJect Code Initialize
7 | (bUIll‘ on platform) fin?;:al??zeent Test Oracle: GT1_GT Test Case: T GT1_GT: a>b boundary valu
Vector 1 66.989 75 X set up stey
Vector 1 61.509 60 1 test step
Comment Test Oracle: GT1_LT Test Case: T GT1_LT: a <b boundary value
Initialize
Vector 1 66.989 75 X
Vector 1 74.489 75 2
Comment Test Oracle: State_HeatOn Test Case: T Reach State Heat On
Initialize
Vector 1 0.00 50 2
Vector 1 49 50 2
Comment Test Oracle: State_HeatOff Test Case: T Reach State Heat Off
Initialize
Vector 1 49 50 1

end



Architecture

MITRE Touch Points
ColHEE Attacker //’ /,4 Claim
el scope N
e et \ declares
~ // // \ 1"*
e MITRE CWE \ - . : : e
creates Pt : K \  Architectural design protection (partitioning,
Access Vi b'I'tl 1.* P t enclaves, encryption, secure DDS, resource/
Vectors HIneraRIY I itigateay | | TOPSTY | = timing guarantees)
1 * 1 * Requirements/design analysis, model check
Risk uses exploits/ " demonstrates properties, graph semantics analysis
Event — * Protection via type safety and ontic-type-
Exploitation Property based static code analysis
/ Result — « Testing: requirements-based, threat-based
causes
supportedBy
Loss Threat Threat /
Event Event triggers | Condition Architectural Analysis Analysis | E.g., Checker
Controls Output Activity | Framework
isManifestedBy Functional execution
N Controls
1__* NIST /:_,:———"_——JV_—__ \\ 7
Hazard 80053 | N E
mitigatedBy \‘§C0pe ,/'
1.* ¥ Legend
Property Architecture | Security related
Touch Points E Safety related

E Activity



@vi dence Artifac% Ks.surance Generation (AA}

* Requirements CLARISSA —
* Cod i
. . L e it iacs | | HON/Adelard/SRI/UTD Tools
Evidence Generation (EG) + Architecture Specs Safety + Security cases
* Design N

DesCert — SRI/HON/UW Tools * Models

* Results, Logs

* Documents, Reports
CLEAR| R

s Evi : Y
vidence Curation (EC)
Text2Test Radler

“Meta” Evidence - GE Tools
Checker

: Verified Evidence
Evid
Sally Framework O‘r:;ole:;;, RA(;K Repository
K (ontic type / kIngestion Package Repository / (github?)
“

‘\ Existing

Workflows : Evidentiary Claims = Evidence in Datalog

Evidential Tool Bus (ETB) My

:
= I ;2f

Y



demo_workflow(/nput) :-

system_modeling(Properties, ArchitectureSpec, SecuritySpec, BaseProcessProvData, RADLProvData, CodeFilesProxy,-
RadlFiles, RequirementProvData, RequirementProperties, RequirementPropertyFiles, RequirementFiles,
ArchControlPropertyResults),

checkerFramework_type _checking(Properties, ArchitectureSpec, CodeFilesProxy, CFPropertyResults),

radler_radl_analysis(Properties, ArchitectureSpec, RadlFiles, RadlerPropertyResults),

text2Test_requirement_analysis(ArchitectureSpec, BaseProcessProvData, RequirementProperties,
RequirementProvData, RequirementPropertyFiles, RequirementFiles, ReqAnalysisPropertyResults),

securityAnalysis_and_ingestion_creation(Properties, ArchitectureSpec, SecuritySpec, BaseProcessProvData,
RADLProvData, RequirementProvData, RequirementProperties, ArchControlPropertyResults, CFPropertyResults,
RadlerPropertyResults, ReqAnalysisPropertyResults, IngestionPackageFiles, IngestionPackageManifest),

rack_ingestion(/ngestionPackageFiles, IngestionPackageManifest, SuccessOrError, ErrorMsg, Handle, Diff), } EC
update_asce_evidence_dnr(Diff, AsceFile),

detect_property_violation(Diff, PropertyViolated), AG
update_asce_with_defeaters(PropertyViolated, AsceFile).




Collection of references to Arch. Elements

Architecture
Touch Points

Radl Architectural Model

models

System
Architecture

! colléction™., _ _
, : isArchitectureOf m "
\ . arentFunction
» " partOf partOf .
Hardware [e— | SYSTEM o< function FUNCTION
Component | i stantiates (core) (core)
1.1 1.7 n 1.7
- o
destPort %, I 3@
o%\ .. source | | destination @(a\\\‘z’ source | yedtination
: 1.* : &
Physical Virtual Dataflow
[ — ~\utilizes Channel | communicatesOver
Authenticatesand/or =
Encrypted mes
1 * Software p
collection collection conten " . lComponent
- " artO ®
Security content Security Enclave )
Perimeter « | (time, space, network partition)
1.. collection, -

Safety DAL: DAL A/B/C/D/E
Security Assurance Level: SAL 1/2/3/4

Architecture
Touch Points




