- ’-J
| |7 i =

PROPERTY-DRIVEN CONTINUOUS ASSURANCE OF SOFTWARE DESIGNS

HIGH CONFIDENCE SOFTWARE AND SYSTEMS CONFERENCE (HCSS 2024)
Annapolis, Maryland

Design for Certification (DesCert) Project
DARPA Automated Rapid Certification of Software (ARCOS) Program

SRIVATSAN VARADARAJAN TEAM:
O L TR o, com DEVESH BHATT, HAO REN, ANITHA MURUGESAN, SRIVATSAN VARADARAJAN
' ' SHANKAR NATARAJAN, MINYOUNG KIM,
May 6, 2024

Z 2N

77NN W
Honeywell UNIVERSITY of

WASHINGTON

mailto:srivatsan.varadarajan@honeywell.com

WHY PROPERY DRIVEN CONTINUOUS ASSURANCE?

[Traditional Means of Compliance]
Commercial

System Development ~ Certification
Vparsin | Aetospace

) DO-178C | Software

Tool Qual
DO-330

DO-333

Safety

ARP4761/

-

Artifacts are just the tip of the iceberg
A large part of assurance lies within the hidden activities
that surround the artifact production

~

Hard to Judge: Quality of Compliance = Degree of Confidence

-

Implicit Prescription Rationale to Designers vs Dearth of
Design Insights for Regulators

J

Development Metrics
Audits People
ey Exp"gr{i_se, Competency

B 4

: Domain knowledge
Creder*i'als, Reputation

»

B, s
Governance , ¥

Oversight
Regulations
el

[Property Driven Continuous Assurance|

Assurance Case (TA3)
CLARISSA—

HO, SRI/UTD Tools

Safety + Secrurgy cases

=

Evidence Generation (TA1)

DesCert — SRI/HON/UW Tools

.

DesCert Vision:
Explicate Hidden Iceberg

SOFTWARE DESIGN FOR EFFICIENT ARGUMENTS

(Definition)

A

Refinement

7

[Argument:

Evidence

Evidence-based Assurance

» Arguments: parent-claims refinements to sub-
claims, & side-claims backed by supporting
evidence that demonstrates that software
faithfully implements the intended behavior

» Repeatable argumentation backed by reusable
assurance sub-cases called Theories with own
supporting evidentiary obligations

» Good argument should make it easy to identify
and fix fallacious reasoning steps

d 4 2
.- - g
. - ‘ . s 4 —
| \ dg:
- A N 3
L.-r- T e ——

‘T THINK You SHouLD BE. MORE. EXPLIC\T KERE. IN STEY TwWo

Making Arguments Efficient

Efficient argument is one whose flaws, if any, can be
easily identified by a skeptic

Good designs expands the falsification space for the
skeptic

Efficiency is measured by the amortized cost of

falsification e.g. Partitioned RTOS, using memory-safe
hardware and type-safe languages

Inefficient arguments due to imprecise claims,
flawed/irrelevant evidence, complex arguments,
unfalsifiable assumptions, invalid reasoning....

EVIDENCE GENERATION TOOLS FOR ASSURANCE

Software Design for Efficient Argument

Ontology

Architecture

]
Tools

Models
Languages

* Precise Claims based on Ontologies

* Valid models and assumptions

* Reusable design tools, “Safe” Languages
 Architectural separation of concerns

* Rigorous chains of reasoning and evidence

Development Phases

: Formal Analysis and Proof
esting

System-Level
Requirements
Compliance

Review - Tool: Sally
Authoring, Architecture
SW High-Level

Conformance
Tool: CLEAR Requirements

Review and

Safety (hazards),
Security (vulnerability)

Con5|stency
Tools: Sally, Text2Test
- Compliance

SW Low-Level > RequjrementsAccuracy,

: Consistency
Requirements Tool: Text2Test

- Compliance

Tools: Checker Framework
Randoop, Daikon, SeaHorn
Source Code > Accuracy, Consistency,
Runtime Safety, Security
Legend:
Assurance Objectives are in green

L denotes development activity.

Object Code denotes verification activity,
evidence generated, traceability

Compliance,
Robustness
Tool:Text2Test

PROPERTY DRIVEN SOFTWARE ASSURANCE

Requirements: Properties: What the system ought to do/not to do
Specific, individual functional

behaviors the system shall do

Safety Liveness Invariants

Specification for design and Something bad will never Something good will eventually = Desired system constraints

Purpose
o implementation happen (bounded time) occur
Verificati) .
A;::f:::c:m Testing Model Checking Testing and Model Checking Testing and Model Checking
If the remaining battery power is = Once the system is in The system shall reach its Emergency landing is always
critically low, the system shall insufficient battery state, destination in normal battery initiated when/after
Exemplars initiate emergency landing then system shall never state (within x secs) systems reached insufficient

transition back to normal
battery state

\ J
\ Y J Y

Derive Tests to execute
on Implementation

battery state

Model-check Properties on Requirements Model
(proxy for checking on implementation)

Capture both Requirements and Properties
» Properties have broader scope and context than individual requirements
+ Capturing both increases confidence in the validity of requirements
» Property holds on the aggregated behavior of individualized requirements

NASA Formal Methods (NFM) symposium 2022 paper: “Requirements-Driven Model
Checking and Test Generation for Comprehensive Verification”

EPS Application
Context Specific
System Y 7| Property

Requirements | Architecture; Specification
Hazards (CLEAR)

<

Convert to
SSM

Synthesis
Model (SSM) 5

1. Heater is always turned on at temp < low thresh

Tool: SALLY 2. Heater is always turned off at temp > high thresh
M°d?' Property | 4 passed
Checking Results 2. Passed
T — 3. Indeterminate
Convert to i _
Sally Model Requirements are

Constrained
Language
Enhanced
Approach to
Requirements

Software
Requirements
Specification
(CLEAR)

Tool: Text2Test

Generic

Formal Methods
Based Property
Verification Track

Test
Generation

Tool: Text2Test

Formal Test
Verification Track

I "Req 1":

While HVAC_Mode is 'Heat Off', when room_temp is
less than set_point_low_threshold degF, then
Thermostat shall set HVAC_Mode to 'Heat On’.

ID “"Req_2":

While HVAC_Mode is 'Heat On', when room_temp is
greater than set_point_high_threshold degF, then
Thermostat shall set HVAC_Mode to 'Heat Off’.

ID "Req_4":

While HVAC_Mode is 'Heat Off’, Thermostat shall
set Display_Indicator to 'White'.

Property
Specification
CLEAR

Software Design, Software
Implementation Code
(manual) (manual)

Tool: Text2Test

2. Consistent
3. Verifiable

Requirements
Analysis

— 4. .
‘ IPliEipEsy 1. Passed

Binary
Executable

Object Code
(built on platform),

Tool: Text2Test

ColumnName
DataType
Initialize
Comment
Initialize
Vector
Vector
Comment
Initialize
Vector
Vector
Comment
Initialize
Vector
Vector
Comment
Initialize
Vector

end

| Test Vectors |—>Test Execution|—»

Test Oracle:

Test Oracle

Test Oracle

Test Oracle:

Pass/Fail
| Results

ColumnContent RepetitionCount Input:1

Resu!t}sﬁ 2. Passed

3. Passed

Test Case: T GT1_GT: Pass
| TestCase: TGT1_LT: Pass

Input:2 Output:1
room_temp set_point Display_Indicator
float32 float32 uint32

GT1_GT TestCase: TGT1_GT:a>b boundary valu

1 66.989 75 X
1 61.509 60
GT1LT

set up ste
1 test step
Test Case: TGTI_LT: a<b boundary value

1 66.989 75 X
1 74.489 7
State_HeatOn TestCase: T Reach State Heat On
1 0.00 50 2
1 49 50 2
State_HeatOff TestCase: T Reach State Heat Off
1 a9 50 1

Belt and Suspender Hybrid Verification Approach: Testing & Formal Methods

SMART REQUIREMENTS ENGINERING USING GEN-AI

Need to address Gen-Al issues:
Lack of system and domain understanding.
Outputs are not always reliable.

Gen-Al Assisted Req. Creation Need human review.
Low-cost Few-Shot Learning of Sys./Domain Cost and usability
Sources: Honeywell’s Proven DO-178C Qualified Tool Chain
- legacy docs.
- customer inputs Artifacts
- req. in other language -y -
5 3 CLEAR IDE Text2Test / HILIiTE]
|
Internal Model .
Formal X > -
Dlensf:r?:t?clm Requirements @
of Regs. | r-> @ % -1 (CLEAR) jReq.
T Analyses
6 J |
l
|
|

Formal analyses-supported review (rule out logic errors, conflicts, gaps, etc.)

SMART REQUIREMENTS ENGINERING USING GEN-AI

Requirement
Categories/Templates
(-]
o= e validation @ e e e — - - -
g |
| .
A validation . !
. Inf || T T T Requirement
nforma . . e .
w Description Eng-l g > New =EAR Edior | Text2Test
User Assistant Requirement || - R S Tool
7y ____/\{ip_d?yv___ 1 o m— S e Honeywell’s
System : e | | —— Proven DO-178C
' 5 : lified Tool Chai
Prompt iteration/ Inputs/Outputs : - I Tests Qualified Tool Chain
correction
v
LLM Agnostic Layer
LLM

ONTOLOGIES SYTEMATIZATION: SAFETY & SECURITY

Architecture
Touch Points

\
.
1

Attacker , Claim
. scope .
X - /« d1ec*lares
°'eatesl) / * Architectural design protection (partitioning,
Access 1 enclaves, encryption, secure DDS, resource/
Vectors Ve 211 mitigatedBy Property | timing guarantees)
- 1 * Requirements/design analysis, model check
Risk uses demonstrates properties, graph semantics analysis
Event * Protection via type safety and ontic-type-
Property based static code analysis
/\ 1\ Result — « Testing: requirements-based, threat-based
%JpponedB\
Loss Threat Threat
Event Event triggers | Condition Architectural Analysis Analysis | E.g., Checker
Controls Output ACthlty Framework
isManifestedBy L Functional execution
e Controls
Hazard 1. - . ;
mitigatedBy| \scope ///l
1. ¥ Legend
. ?;S::epcct)ﬁ:tes ‘:| Security related
l:l Safety related
|:| Activity

Threat ___________[EntyPoint _____JRisk ________________|mitigation

Radler Certified Build/Attestation

Malicious Code

Malicious Inside Actor

Loss of Information Integrity

Loss of Comm. integrity

Access Control Violation

Bad/Unexpected Input

Build Process

Untrusted Code

Tampering

Communication layer

Architecture

Unchecked input ports

Failure, Unauthorized Access

Failure

Failure, Unauthorized Access

DosS, Failure, exfiltration/infiltration

Infiltration, Exfiltration, Jamming

Failure/Remote Code Execution

Radler Security Enclaves

Radler Security Enclaves
Radler/SROS2 protections
Radler config., Ontic analysis

Ontic Type Analysis

ollection

Ontological categories for modeling of:

1. Threats: Bypassing access control/ input
validation, race conditions, timing attacks,
phishing, privilege escalation, malicious code,
remote code execution

2. Vulnerabilities: Null dereference, SQL
injection, Buffer overflow

3. Controls: Physical security, Access control,
Monitoring, Reporting, Authentication

4. Risk/loss events: Loss of Confidentiality,
Integrity, Availability, Safety;,..

5. Architecture/Touch (entry) Points: Sensors,
Actuators, Communication channels, Files,
Hardware, Software Components etc.

Radl Architectural Model

Collection of references to Arch. Elements
Architecture
Touch Points

;#;r}function

FUNCTION
(core)

1.*

SieIEd| function

(core)

1.1 1.
&
source | | destination é{b *
& S
&
Physical N

Lx
1. =
‘ = Virtual -
utilize: ommupitatesOver
[izEEE Authenticatedand/or Channel

Encrypted mesdsges
1.+
conten /7

1.*

stination

Software
Component

Security content
Perimeter 1.

Security Enclave
(time, space, network partition)

Safety DAL: DAL A/B/C/D/E
Security Assurance Level: SAL 1/2/3/4

Architéclure
Touch Points 8

END-TO-END, TOP-DOWN EVIDENCE GENERATION

—

System P S - attack . [Threat Security P_roperty Analysis
ecurity e \;cce?—-" Event All exploitable
ConOps Model : oi ST vulnerabilities are
Development . ‘exploits . mitigated by properties
System & Software 7 (S vulnerability Securlty with satisfied results
System Architecture CLEARIDEA @ 7, Model Vulnerability touchpoint
Requirements o itigatedb ode ulnerability touchpoints
‘ g y
: 1t /. Control must be subset of those of
& Architecture b / ;
= it L Properties, & Controls
evelopment Property | support: Analysis Ontic
(SRAD) Result j«———"Output [* [Analysis
7 Checker Static Code/Ontic Analysis

* No resource leakage
* No tainted data use
* No nullness

Framewor

System

.
Requirements * No remote code
: Generic @ @ execution
s | Logger, Log4),
property b I P ; Moﬁﬁgﬁrgé’fcwe Architecture Analysis
f Radler 2 @ <:>@ (Java) * Bounded latency for
- : . Sl messages
SW High-Level W Archltect_ure Lo S Ll + Communication messages are
Requirements - Analysis fCLEAR IDE/ - delivered in order
Code (C+) * Non-interference, partition
:) guarantees
P code
Radler Build
Generic
Property [\
[Test Oracles E— Claims Model | Theory
i / Coverage
Requirement Sets B usesTheory
1-4 declares ——
| Execution Result | |
. ZCLEAR IDE;
mitigates Safety Property Analysis
Specific | * Copter always terminates flight within
Property range at pre-defined waypoint
Copter ensures communication of location Legend

EVIDENCE INTEGRATED FOR CONTINUOUS ASSURANCE

Define PropertyResult_NoReslLeak_SW_Logdj as instance of type DecisionPropertyResult

Assign PropertyResult NoResleak SW Logdj.descri s as
Assign PropertyResult_NoReslLeak_SW_Logdj.decis Outcome as JETISERRTLN -

: j _ - - Assurance Generation (AG
Rosien BropernSngats Mobsiank ALLoutl- et eton o D v Nk Lot /Evidence Artifacts\ (AG)
: ork * Requirements . CLARISSA -
‘ * Code w/wo Annotations HON/Adelard/SRI/UTD Tools

* Tests, Analysis, V&V artifacts
Define PropertyResult_NoResLeak_SW_Logdj as insta f type DecisionPropertyResult. * Architecture Specs Safety+securlty cases
Assign PropertyResult_NoReslLeak_SW_Logdj.descriptions as t t of . Design
Assign PropertyResult_NoResLeak_SW_Logdj.decisionOutcome as JISTISERSTIN. « Model
Azzign PropertyResult NoResleak SW Logdj.demonstrates as Property NoResleak SW Logdj. oaels
Assign PropertyResult_NoResLeak_SW_Logdj.supportedBy as set {PRE_NoResLeak_SW_Logdj, CTRL . ReSUItS, Logs
Assign PropertyResult_NoReslLeak_SW_Logdj.wasGeneratedBy as ANALYSIS_CheckerFramework_2. « Documents Reports
’

Assign PropertyResult_NoReslLeak_SW_Logdj.wasGeneratedBy as ANALYSIS_Checkerframework_1.

Figure 44: Scenario 2 update to Checker Framework Analysis Results of the Code Changes

Radler cwvidence Curation (EC

“Meta” Evidence - GE Tools

Text2Test

defeater

Checker

Evidence Verified Evidence
Framework Ontology,'£ RAC_K Revository
(ontic type ngestion Packa i F epository (g'tht b?)
Existing Mmeeemd |
o , . \NodegroupQuery Jll Rdded Evidence URI Linkj
Versioning, Attestation Versioning, Attestation

Workflows : Evidentiary Claims = Evidence in Datalog

§ I S -
g 0-178C DO-326A
demo_workflow(Input) :- (E B) Properties (OP

system_modeling(Properties, ArchitectureSpec, SecuritySpec, BaseProcessProvData, RADLProvData, CodeFiIesProxy,- C
RadlFiles, RequirementProvData, RequirementProperties, RequirementPropertyFiles, RequirementFiles, 3 ga
(=]

ArchControlPropertyResults),
checkerFramework_type_checking(Properties, ArchitectureSpec, CodeFilesProxy, CFPropertyResults),
radler_radIl_analysis(Properties, ArchitectureSpec, RadlFiles, RadlerPropertyResults),
text2Test_requirement_analysis(ArchitectureSpec, BaseProcessProvData, RequirementProperties,
RequirementProvData, RequirementPropertyFiles, RequirementFiles, ReqAnalysisPropertyResults),
securityAnalysis_and_ingestion_creation(Properties, ArchitectureSpec, SecuritySpec, BaseProcessProvData,
RADLProvData, RequirementProvData, RequirementProperties, ArchControlPropertyResults, CFPropertyResults,
RadlerPropertyResults, ReqAnalysisPropertyResults, IngestionPackageFiles, IngestionPackageManifest),
rack_ingestion(/ngestionPackageFiles, IngestionPackageManifest, SuccessOrError, ErrorMsg, Handle, Diff),]- EC
update_asce_evidence_dnr(Diff, AsceFile),

detect_property_violation(Diff, PropertyViolated), AG
update_asce_with_defeaters(PropertyViolated, AsceFile). J

G
G

10

SySte m SRAD

ConOps

System & Software

System Architecture
Requirements
& Architecture >
Development

System

Requirements

SW High-Level
Requirements

Requirement Sets
1-4

ZCLEAR e[¢

Radler

- / attack Threat
S;C;L:eltly e 599‘?.%?" Event Text2Test
Development xploits :
Security

> vulnerability

el
/‘ Control

Security Property Analysis
All exploitable
vulnerabilities are
mitigated by properties
with satisfied results

Vulnerability touchpoints
must be subset of those of

_/A

rchitecture
Analysis

Property
Result

_| Test Oracles
/ Coverage

_ Properties, & Controls

Static Code/Ontic Analysis
* No resource leakage

* No tainted data use

* No nullness

* No remote code
execution

Architecture Analysis

Bounded latency for
messages

Communication messages are
delivered in order
Non-interference, partition
guarantees

demons su ort*’/ - Ontic
trates Result |4 A(S‘St'gﬁ'ts “—|Analysis
\ / Checker
Arch\i\tecture Touch Points Framewor
d \
1w Gw)| - !
) A P Logger, Log4J,
N ““&lMonitor, BB3 Code
|@ ! (Java) .
Architecture Model,\ji\;_\i ffffffffffffffffffffffffffffffffffffff > .
fCLEAR IDE/ 4| Component
Code (C++) .
code
Radler Build
Claims Model
Executable

N

| Theory

TusesTheory
1

N
- Tests

| —)

N Test Test
Execution Result

declares
Property l¢

Claim

CLEAR IDE

[

Safety Property Analysis
* Copter always terminates flight within

Property

Result

J range at pre-defined waypoint

Copter ensures communication of location

Legend /TooT 7

Context

System

\
L --
|
I

Requirements,| Architecture;

’
/
’

Hazards

Constrained

Language Software
Enhanced Requirements
Approach to Specification
Requirements (CLEAR)

\Toolg Text2Test

Attt] Tool: SALLY
Specific
> Model
---------------- Property .
Specification Checking
(CLEAR)
Semantic i
Convert to >| Synthesis Sally Model
SSM Model (SSM)

-

Tool: Text2Test

Formal Methods
Based Property
Verification Track

Formal Test
Verification Track

A

Generic
1| Property

Specification

(CLEAR

Test

Generation

Requirements
Analysis

Tool: Text2Test

Tool: Text2Test

/

Software Design,
Implementation
(manual) i

\ 4

ID "Req_1":

While HVAC_Mode is 'Heat Off', when room_temp is

less than set_point_low_threshold degF, then
Thermostat shall set HVAC_Mode to ‘Heat On”’.

ID "Req 2":

While HVAC_Mode is 'Heat On', when room_temp is

Thermostat shall set HVAC_Mode to 'Heat Off~’.
ID "Req_4":

While HVAC_Mode is 'Heat Off’, Thermostat shall
set Display_Indicator to 'White'.

greater than set_point_high_threshold degF, then

—»l Test Vectors]—'Test Execution\—>

ProPerty 1. Passed

2. Passed
3. Indeterminate

Results

[Requirements are
1. Accurate

2. Consistent
3. Verifiable

4, ...

(1. Heater is always turned on at temp < low thresh
2. Heater is always turned off at temp > high thresh

Property
Results

Pass/Fail
Results

1. Passed
2. Passed
. 3. Passed

Test Case: T GT1_GT: Pass
Test Case: T GT1_LT: Pass

- Binary ColumnContent RepetitionCount Input:1 Input:2 Output:1
SOftware E t bl ColumnName room_temp set_point Display_Indicator
COde > X.ecu able DataType float32 float32 uint32
e ObJect Code Initialize
7 | (bUIll‘ on platform) fin?;:al??zeent Test Oracle: GT1_GT Test Case: T GT1_GT: a>b boundary valu
Vector 1 66.989 75 X set up stey
Vector 1 61.509 60 1 test step
Comment Test Oracle: GT1_LT Test Case: T GT1_LT: a <b boundary value
Initialize
Vector 1 66.989 75 X
Vector 1 74.489 75 2
Comment Test Oracle: State_HeatOn Test Case: T Reach State Heat On
Initialize
Vector 1 0.00 50 2
Vector 1 49 50 2
Comment Test Oracle: State_HeatOff Test Case: T Reach State Heat Off
Initialize
Vector 1 49 50 1

end

Architecture

MITRE Touch Points
ColHEE Attacker //’ /,4 Claim
el scope N
e et \ declares
~ // // \ 1"*
e MITRE CWE \ - . : : e
creates Pt : K \ Architectural design protection (partitioning,
Access Vi b'I'tl 1.* P t enclaves, encryption, secure DDS, resource/
Vectors HIneraRIY I itigateay | | TOPSTY | = timing guarantees)
1 * 1 * Requirements/design analysis, model check
Risk uses exploits/ " demonstrates properties, graph semantics analysis
Event — * Protection via type safety and ontic-type-
Exploitation Property based static code analysis
/ Result — « Testing: requirements-based, threat-based
causes
supportedBy
Loss Threat Threat /
Event Event triggers | Condition Architectural Analysis Analysis | E.g., Checker
Controls Output Activity | Framework
isManifestedBy Functional execution
N Controls
1__* NIST /:_,:———"_——JV_—__ \\ 7
Hazard 80053 | N E
mitigatedBy \‘§C0pe ,/'
1.* ¥ Legend
Property Architecture | Security related
Touch Points E Safety related

E Activity

@vi dence Artifac% Ks.surance Generation (AA}

* Requirements CLARISSA —
* Cod i
. . L e it iacs | | HON/Adelard/SRI/UTD Tools
Evidence Generation (EG) + Architecture Specs Safety + Security cases
* Design N

DesCert — SRI/HON/UW Tools * Models

* Results, Logs

* Documents, Reports
CLEAR| R

s Evi : Y
vidence Curation (EC)
Text2Test Radler

“Meta” Evidence - GE Tools
Checker

: Verified Evidence
Evid
Sally Framework O‘r:;ole:;;, RA(;K Repository
K (ontic type / kIngestion Package Repository / (github?)
“

‘\ Existing

Workflows : Evidentiary Claims = Evidence in Datalog

Evidential Tool Bus (ETB) My

:
= I ;2f

Y

demo_workflow(/nput) :-

system_modeling(Properties, ArchitectureSpec, SecuritySpec, BaseProcessProvData, RADLProvData, CodeFilesProxy,-
RadlFiles, RequirementProvData, RequirementProperties, RequirementPropertyFiles, RequirementFiles,
ArchControlPropertyResults),

checkerFramework_type _checking(Properties, ArchitectureSpec, CodeFilesProxy, CFPropertyResults),

radler_radl_analysis(Properties, ArchitectureSpec, RadlFiles, RadlerPropertyResults),

text2Test_requirement_analysis(ArchitectureSpec, BaseProcessProvData, RequirementProperties,
RequirementProvData, RequirementPropertyFiles, RequirementFiles, ReqAnalysisPropertyResults),

securityAnalysis_and_ingestion_creation(Properties, ArchitectureSpec, SecuritySpec, BaseProcessProvData,
RADLProvData, RequirementProvData, RequirementProperties, ArchControlPropertyResults, CFPropertyResults,
RadlerPropertyResults, ReqAnalysisPropertyResults, IngestionPackageFiles, IngestionPackageManifest),

rack_ingestion(/ngestionPackageFiles, IngestionPackageManifest, SuccessOrError, ErrorMsg, Handle, Diff), } EC
update_asce_evidence_dnr(Diff, AsceFile),

detect_property_violation(Diff, PropertyViolated), AG
update_asce_with_defeaters(PropertyViolated, AsceFile).

Collection of references to Arch. Elements

Architecture
Touch Points

Radl Architectural Model

models

System
Architecture

! colléction™., _ _
, : isArchitectureOf m "
\ . arentFunction
» " partOf partOf .
Hardware [e— | SYSTEM o< function FUNCTION
Component | i stantiates (core) (core)
1.1 1.7 n 1.7
- o
destPort %, I 3@
o%\ .. source | | destination @(a\\\‘z’ source | yedtination
: 1.* : &
Physical Virtual Dataflow
[— ~\utilizes Channel | communicatesOver
Authenticatesand/or =
Encrypted mes
1 * Software p
collection collection conten " . lComponent
- " artO ®
Security content Security Enclave)
Perimeter « | (time, space, network partition)
1.. collection, -

Safety DAL: DAL A/B/C/D/E
Security Assurance Level: SAL 1/2/3/4

Architecture
Touch Points

