
PROPERTY-DRIVEN CONTINUOUS ASSURANCE OF SOFTWARE DESIGNS

HIGH CONFIDENCE SOFTWARE AND SYSTEMS CONFERENCE (HCSS 2024)
Annapolis, Maryland

SRIVATSAN VARADARAJAN
HONEYWELL INTERNATIONAL
SRIVATSAN.VARADARAJAN@HONEYWELL.COM

May 6, 2024

Design for Certification (DesCert) Project
DARPA Automated Rapid Certification of Software (ARCOS) Program

TEAM:
DEVESH BHATT, HAO REN, ANITHA MURUGESAN, SRIVATSAN VARADARAJAN

SHANKAR NATARAJAN, MINYOUNG KIM,
MICHAEL ERNST supported by

mailto:srivatsan.varadarajan@honeywell.com

2

WHY PROPERY DRIVEN CONTINUOUS ASSURANCE?
Traditional Means of Compliance

DO-178C

ARP4754A

DO-331
DO-330

ARP4761

System Development

Software

Safety

Tool Qual

DO-333

DO-326
DO-355

DO-356

Security

Commercial
Certification
Aerospace

Artifacts are just the tip of the iceberg
A large part of assurance lies within the hidden activities

that surround the artifact production

Process
Human Centric View

Development Metrics
Audits People

Expertise, Competency
Domain knowledge

Credentials, Reputation

Governance
Oversight

Regulations

Hard to Judge: Quality of Compliance	≟	Degree of Confidence
Implicit Prescription Rationale to Designers vs Dearth of

Design Insights for Regulators

DesCert Vision:
Explicate Hidden Iceberg

Ø Making assurance more objective (i.e.
property-driven), evidence based, explicit
rationale, automated, and systematic

Ø Making assurance less process/compliance-
driven, prescriptive and implicit rationale

Ø Less documentary artifact production &
More rigorous digital engineering

Ø Encourage development, regulatory
innovations that lowers cost, time and errors

Ø Incremental Certification of changes,
Continuous Assurances for CI/CD Pipelines

Property Driven Continuous Assurance

3

SOFTWARE DESIGN FOR EFFICIENT ARGUMENTS

Evidence-based Assurance
Ø Arguments: parent-claims refinements to sub-

claims, & side-claims backed by supporting
evidence that demonstrates that software
faithfully implements the intended behavior

Ø Repeatable argumentation backed by reusable
assurance sub-cases called Theories with own
supporting evidentiary obligations

Ø Good argument should make it easy to identify
and fix fallacious reasoning steps

Claim

Argument:
Refinement

Theory
(Definition)

Claim

Argument:
Evidence Obligations

Evidence
Sub Claim Sub Claim

Comments

Theory

Application

Side Claim
(Assumption) Sub-case

Evidence

Evidence

Making Arguments Efficient
Ø Efficient argument is one whose flaws, if any, can be

easily identified by a skeptic
Ø Good designs expands the falsification space for the

skeptic
Ø Efficiency is measured by the amortized cost of

falsification e.g. Partitioned RTOS, using memory-safe
hardware and type-safe languages

Ø Inefficient arguments due to imprecise claims,
flawed/irrelevant evidence, complex arguments,
unfalsifiable assumptions, invalid reasoning….

4

EVIDENCE GENERATION TOOLS FOR ASSURANCE

Software Design for Efficient Argument

• Precise Claims based on Ontologies
• Valid models and assumptions
• Reusable design tools, ”Safe” Languages
• Architectural separation of concerns
• Rigorous chains of reasoning and evidence

5

PROPERTY DRIVEN SOFTWARE ASSURANCE

NASA Formal Methods (NFM) symposium 2022 paper: “Requirements-Driven Model
Checking and Test Generation for Comprehensive Verification”

Capture both Requirements and Properties
• Properties have broader scope and context than individual requirements
• Capturing both increases confidence in the validity of requirements
• Property holds on the aggregated behavior of individualized requirements

Derive Tests to execute
on Implementation

Model-check Properties on Requirements Model
 (proxy for checking on implementation)

Belt and Suspender Hybrid Verification Approach: Testing & Formal Methods

6

SMART REQUIREMENTS ENGINERING USING GEN-AI

CLEAR IDE Text2Test / HiLiTE

Formal
Requirements

(CLEAR)

Internal Model

Honeywell’s Proven DO-178C Qualified Tool Chain

Informal
Description

of Reqs.

IDE-supported review (rule out domain error, syntax error, etc.)

Formal analyses-supported review (rule out logic errors, conflicts, gaps, etc.)

Sources:
 - legacy docs.
 - customer inputs
 - req. in other language

Lack of system and domain understanding.

Gen-AI Assisted Req. Creation
Low-cost Few-Shot Learning of Sys./Domain

Need human review.
Outputs are not always reliable.

Need to address Gen-AI issues:

Tests

code

Req.
Analyses

Artifacts

Cost and usability

7

SMART REQUIREMENTS ENGINERING USING GEN-AI

Informal
Description

User

Engineering
Assistant

Tests

Requirement
AnalysesText2Test

Tool

Honeywell’s
Proven DO-178C
Qualified Tool Chain

validation

CLEAR Editor

Requirement
Categories/Templates

Tests

New
Requirement

Window

validation

System
Inputs/Outputs

LLM

LLM Agnostic Layer

Prompt iteration/
correction

8

ONTOLOGIES SYTEMATIZATION: SAFETY & SECURITY
Ontological categories for modeling of:
1. Threats: Bypassing access control/ input

validation, race conditions, timing attacks,
phishing, privilege escalation, malicious code,
remote code execution

2. Vulnerabilities: Null dereference, SQL
injection, Buffer overflow

3. Controls: Physical security, Access control,
Monitoring, Reporting, Authentication

4. Risk/loss events: Loss of Confidentiality,
Integrity, Availability, Safety,..

5. Architecture/Touch (entry) Points: Sensors,
Actuators, Communication channels, Files,
Hardware, Software Components etc.

9

END-TO-END, TOP-DOWN EVIDENCE GENERATION

10

EVIDENCE INTEGRATED FOR CONTINUOUS ASSURANCE

Versioning, AttestationVersioning, Attestation

THANK
YOU

11

Architecture
Analysis

System
ConOps

System
Requirements

SW High-Level
Requirements

System & Software
Architecture

Component
Code (C++)

Generic
Property

Radler

AFS
Requirement Sets

1-4

CLEAR IDE

Sally

Sally ModelSally Model

System
Requirements
& Architecture
Development

(SRAD)

Specific
Property

Hazards
(safety) mitigates

Property
Result

PVS Models
& Proofs

PVS

Text2Test

Test

Test Oracles
/ Coverage

Tests Test
Execution

Test
Result

Property
Result

Security
Model

Development

Architecture Model

CLEAR IDE
Control

vulnerability
exploits

SW

SW

Generic
Property

attack

mitigatedby

Legend Tool

Property

Property

SRAD

Property
Result

demons
trates Analysis

Output
Ontic

Analysis
support

Threat
Eventsuccess

Security
Model

Checker
FrameworkArchitecture Touch Points

CLEAR IDE

Logger, Log4J,
Monitor, BB3 Code

(Java)

Radler Build

SW

SW

Property

Executable

code

Claim
declares

Claim

Graph
Analysis

Graph
Property Text2Test

CLEAR IDE

Claims Model

Security Property Analysis
All exploitable
vulnerabilities are
mitigated by properties
with satisfied results
Vulnerability touchpoints
must be subset of those of
Properties, & Controls

TheoryTheory

usesTheory

Static Code/Ontic Analysis
• No resource leakage
• No tainted data use
• No nullness
• No remote code

execution

Architecture Analysis
• Bounded latency for

messages
• Communication messages are

delivered in order
• Non-interference, partition

guarantees

Safety Property Analysis
• Copter always terminates flight within

range at pre-defined waypoint
• Copter ensures communication of location

Software
Requirements
Specification

(CLEAR)

Architecture
System

Requirements,
Hazards

Context

Property
Results

Requirements
Analysis

Convert to
SSM

Semantic
Synthesis

Model (SSM)

Model
Checking

Property
Results

Test
Generation

Software Design,
Implementation

(manual)

Code
Software

Code
(manual)

Test Vectors Test Execution Pass/Fail
Results

Tool: Text2Test

Tool: Text2Test

Tool: Text2Test

Tool: SALLY

Convert to
Sally Model

Tool: Text2Test

Formal Methods
Based Property

Verification Track

Formal Test
Verification Track

Code
Binary

Executable
Object Code

(built on platform)

Application
Specific
Property
Specification
(CLEAR)

Generic
Property
Specification
(CLEAR)

Constrained
Language
Enhanced
Approach to
Requirements

ID "Req_1":
While HVAC_Mode is 'Heat Off', when room_temp is
less than set_point_low_threshold degF, then
Thermostat shall set HVAC_Mode to 'Heat On’.
ID "Req_2":
While HVAC_Mode is 'Heat On', when room_temp is
greater than set_point_high_threshold degF, then
Thermostat shall set HVAC_Mode to 'Heat Off’.
ID "Req_4":
While HVAC_Mode is 'Heat Off’, Thermostat shall
set Display_Indicator to 'White'.

1. Heater is always turned on at temp < low thresh
2. Heater is always turned off at temp > high thresh

1. Passed
2. Passed
3. Indeterminate

Requirements are
1. Accurate
2. Consistent
3. Verifiable
4. ….

1. Passed
2. Passed
3. Passed

ColumnContent RepetitionCount Input:1 Input:2 Output:1
ColumnName room_temp set_point Display_Indicator
DataType float32 float32 uint32
Initialize
Comment Test Oracle: GT1_GT Test Case: T GT1_GT: a > b boundary value
Initialize
Vector 1 66.989 75 X set up step
Vector 1 61.509 60 1 test step
Comment Test Oracle: GT1_LT Test Case: T GT1_LT: a < b boundary value
Initialize
Vector 1 66.989 75 X
Vector 1 74.489 75 2
Comment Test Oracle: State_HeatOn Test Case: T Reach State Heat On
Initialize
Vector 1 0.00 50 2
Vector 1 49 50 2
Comment Test Oracle: State_HeatOff Test Case: T Reach State Heat Off
Initialize
Vector 1 49 50 1
….
end

Test Case: T GT1_GT: Pass
Test Case: T GT1_LT: Pass
…

Hazard

1..*

Attacker

Access
Vectors

creates

Vulnerability

exploits

Exploitation

uses
1..*

Threat
Condition Architectural

Controls

1..*
mitigatedBy

causes

Property

• Architectural design protection (partitioning,
enclaves, encryption, secure DDS, resource/
timing guarantees)

• Requirements/design analysis, model check
properties, graph semantics analysis

• Protection via type safety and ontic-type-
based static code analysis

• Testing: requirements-based, threat-based

Threat
Event triggers

Loss
Event

Risk
Event

isManifestedBy

Property

1..*

mitigatedBy
1..* Legend

Security related

Safety related

MITRE
CAPEC

NIST
800-53

MITRE CWE

Architecture
Touch Points

Property
Result

demonstrates

Analysis
Output

supportedBy

scope

scope

Analysis
Activity

E.g., Checker
Framework
execution

Activity

Claim

declares
1..*

Architecture
Touch Points

Functional
Controls

Evidential Tool Bus (ETB)

Evidence Generation (EG)

DesCert – SRI/HON/UW Tools

CLEAR

Text2Test

Sally

Radler

Checker
Framework
(ontic type)

Evidence Curation (EC)
“Meta” Evidence - GE Tools

Evidence
Ontology,

Ingestion Package

RACK
Repository

Verified Evidence
Repository
(github?)

Evidence Artifacts
• Requirements
• Code w/wo Annotations
• Tests, Analysis, V&V artifacts
• Architecture Specs
• Design
• Models
• Results, Logs
• Documents, Reports
• ….

Assurance Generation (AG)
CLARISSA –

HON/Adelard/SRI/UTD Tools
Safety + Security cases

Workflows : Evidentiary Claims à Evidence in Datalog

DO-178COverarching
Properties (OP)

DO-326A

Added Evidence URI Link
Existing

Nodegroup Query

defeater

demo_workflow(Input) :-
system_modeling(Properties, ArchitectureSpec, SecuritySpec, BaseProcessProvData, RADLProvData, CodeFilesProxy,

RadlFiles, RequirementProvData, RequirementProperties, RequirementPropertyFiles, RequirementFiles,
ArchControlPropertyResults),

checkerFramework_type_checking(Properties, ArchitectureSpec, CodeFilesProxy, CFPropertyResults),
radler_radl_analysis(Properties, ArchitectureSpec, RadlFiles, RadlerPropertyResults),
text2Test_requirement_analysis(ArchitectureSpec, BaseProcessProvData, RequirementProperties,

RequirementProvData, RequirementPropertyFiles, RequirementFiles, ReqAnalysisPropertyResults),
securityAnalysis_and_ingestion_creation(Properties, ArchitectureSpec, SecuritySpec, BaseProcessProvData,

RADLProvData, RequirementProvData, RequirementProperties, ArchControlPropertyResults, CFPropertyResults,
RadlerPropertyResults, ReqAnalysisPropertyResults, IngestionPackageFiles, IngestionPackageManifest),

rack_ingestion(IngestionPackageFiles, IngestionPackageManifest, SuccessOrError, ErrorMsg, Handle, Diff),
update_asce_evidence_dnr(Diff, AsceFile),
detect_property_violation(Diff, PropertyViolated),
update_asce_with_defeaters(PropertyViolated, AsceFile).

AG

EC

EG

destination

System
Architecture

isArchitectureOf

Radl Architectural Model

models

Security
Perimeter

SYSTEM
(core)

communicatesOver

FUNCTION
(core)

1..1

parentFunction

Virtual
Channel

source destination

Software
Component

Hardware
 Component

hosts
1..*

ins
tan

tia
tes

1..*

*..
*

Dataflow

1..1

source

1..*

1..*

Physical
Interface

1..1
srcPort

content

1..*

utilizes

1..*

Authenticated and/or
Encrypted messages

Security Enclave
(time, space, network partition)1..*

Safety DAL: DAL A/B/C/D/E
Security Assurance Level: SAL 1/2/3/4

1..*content

Port
port

destPort

function
1..*

partOf partOf

collection
partOf

instantiates

Architecture
Touch Points

Architecture
Touch Points

collection

collection

collection

Collection of references to Arch. Elements

