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Rust: Safe and Efficient System-Level Programming

▪ Safe: memory-access interface defined via ownership

▪ Efficient: auto-deallocation (no garbage collector)

▪ Modern and “in vogue”:

– trying-to-be-helpful compiler & build system

– active user community
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Rust: Beloved Features and Non-Features

Object-Oriented Programming

• Objects: struct instances, with 

encapsulated data and methods

• Information hiding: private data 

fields in structs

• Inheritance: one struct refines (spe-

cializes) data & methods of another

• Exception handling: errors/edge cases 

handled away from mainstream code

Absence of these features steepens the already steep 

learning curve specifically for C++/Java programmers.
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Goal of This Work

▪ Rust-like language with 1st-class support for exceptions 

and inheritance

▪ Transpilable into genuine Rust. (No extra runtime support!)

Roof: Rust with Object-Oriented 

Features
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SOME DETAILS
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Exception Handling Primer: throw, try, catch!

Intended meaning:

➢  throw! : generate exception,

 to be passed up the call stack

 in search for handler

➢  try!  +  catch! :

1. Execute try code.

2. a) If exception is encountered,
    pass control to catch block.

b) Otherwise skip catch block.

(C++ exception model)
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Existing Rust-Style Error Handling

Rust has a “union” type

enum Result<T,E> { Ok(T), Err(E) }

 = a two-variant type encapsulating “ok” and error results:
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Throwing and Propagating Exceptions

Idea: Treat exceptions as part of a function’s return value.

1.a  Throwing:

1.b  Propagation: change calls to may-throw f() outside a try block:

Rust helps us out here:
f() → f()?

• Perform may-throw analysis

• Change all functions that may throw to return Result<T,str>

• return x           becomes      return Ok(x)

throw!("Error!")   becomes      return Err("Error!")

f()  →
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Trying and Catching Exceptions

Idea: Abstract try block into a function.

2.a   Wrap try code into helper function.

2.b   Call the helper.

2.c   Pattern-match on the result.
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Roof to Rust Transpilation: Result
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DISCUSSION
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Trade-Offs of our Exception Handling

Our Exception system is currently binary:

A function either throws or it doesn’t throw.

In reality:

▪ Exception types form hierarchies.

▪ Binary matching Ok(_) vs. Err(e) should really be (sub-)type checking

  → we need inheritance.
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Inheritance in Rust

1. Simple data and method inheritance:

▪ Turn “is a" relationship into “has a”:

▪ Works for multiple inheritance, too 

2. Virtual methods: can be implemented using Rust’s trait mechanism:

▪ Capture virtual methods in a trait (function body = default implementation)

▪ Wrap a Box pointer around variables of base type: “dynamic dispatch”

Box<dyn Plant>

class Tree: public Plant → class Tree { Plant p; … }
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1. Can we do it?

– “OOP” means different things to different people

– Core OOP concepts can be implemented fairly naturally in Rust

2. Do we need it?

– Rust certainly has its own design patterns.

– OOP comes with a baggage of 50+ years of history (“legacy concept”)

– New Rust programmers with C++/Java background will appreciate

Summary: OO Programming in Rust
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