
Putting a Roof over your Head
Object-Oriented Programming in Rust

Nathaniel Berch, Paul Rodriguez, Thomas Wahl May 8, 2024

This material is based upon work supported by the Defense Advanced Research Projects Agency under Contract No. HR001122C0025. The views, opinions and/or findings
expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is unlimited.

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is unlimited.

Rust: Safe and Efficient System-Level Programming

▪ Safe: memory-access interface defined via ownership

▪ Efficient: auto-deallocation (no garbage collector)

▪ Modern and “in vogue”:

– trying-to-be-helpful compiler & build system

– active user community

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is unlimited.

Rust: Beloved Features and Non-Features

Object-Oriented Programming

• Objects: struct instances, with

encapsulated data and methods

• Information hiding: private data

fields in structs

• Inheritance: one struct refines (spe-

cializes) data & methods of another

• Exception handling: errors/edge cases

handled away from mainstream code

Absence of these features steepens the already steep

learning curve specifically for C++/Java programmers.

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is unlimited.

Goal of This Work

▪ Rust-like language with 1st-class support for exceptions

and inheritance

▪ Transpilable into genuine Rust. (No extra runtime support!)

Roof: Rust with Object-Oriented

Features

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is unlimited.
© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is unlimited.

SOME DETAILS

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is unlimited.

Exception Handling Primer: throw, try, catch!

Intended meaning:

➢ throw! : generate exception,

 to be passed up the call stack

 in search for handler

➢ try! + catch! :

1. Execute try code.

2. a) If exception is encountered,
 pass control to catch block.

b) Otherwise skip catch block.

(C++ exception model)

A
 R

o
o

f
p

ro
g

ra
m

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is unlimited.

Existing Rust-Style Error Handling

Rust has a “union” type

enum Result<T,E> { Ok(T), Err(E) }

 = a two-variant type encapsulating “ok” and error results:

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is unlimited.

Throwing and Propagating Exceptions

Idea: Treat exceptions as part of a function’s return value.

1.a Throwing:

1.b Propagation: change calls to may-throw f() outside a try block:

Rust helps us out here:
f() → f()?

• Perform may-throw analysis

• Change all functions that may throw to return Result<T,str>

• return x becomes return Ok(x)

throw!("Error!") becomes return Err("Error!")

f() →

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is unlimited.

Trying and Catching Exceptions

Idea: Abstract try block into a function.

2.a Wrap try code into helper function.

2.b Call the helper.

2.c Pattern-match on the result.

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is unlimited.

Roof to Rust Transpilation: Result

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is unlimited.
© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is unlimited.

DISCUSSION

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is unlimited.

Trade-Offs of our Exception Handling

Our Exception system is currently binary:

A function either throws or it doesn’t throw.

In reality:

▪ Exception types form hierarchies.

▪ Binary matching Ok(_) vs. Err(e) should really be (sub-)type checking

 → we need inheritance.

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is unlimited.

Inheritance in Rust

1. Simple data and method inheritance:

▪ Turn “is a" relationship into “has a”:

▪ Works for multiple inheritance, too

2. Virtual methods: can be implemented using Rust’s trait mechanism:

▪ Capture virtual methods in a trait (function body = default implementation)

▪ Wrap a Box pointer around variables of base type: “dynamic dispatch”

Box<dyn Plant>

class Tree: public Plant → class Tree { Plant p; … }

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is unlimited.

1. Can we do it?

– “OOP” means different things to different people

– Core OOP concepts can be implemented fairly naturally in Rust

2. Do we need it?

– Rust certainly has its own design patterns.

– OOP comes with a baggage of 50+ years of history (“legacy concept”)

– New Rust programmers with C++/Java background will appreciate

Summary: OO Programming in Rust

https://creativecommons.org/licenses/by-nc-nd/4.0/

	Default Section
	Slide 1
	Slide 2: Rust: Safe and Efficient System-Level Programming
	Slide 3: Rust: Beloved Features and Non-Features
	Slide 4: Goal of This Work
	Slide 5
	Slide 6: Exception Handling Primer: throw, try, catch!
	Slide 7: Existing Rust-Style Error Handling
	Slide 8: Throwing and Propagating Exceptions
	Slide 9: Trying and Catching Exceptions
	Slide 10: Roof to Rust Transpilation: Result
	Slide 11
	Slide 12: Trade-Offs of our Exception Handling
	Slide 13: Inheritance in Rust
	Slide 14: Summary: OO Programming in Rust

