
© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

Reverse Architecting Software Binaries
HCSS 2024 – May 8, 2024
Greg Nelson (gnelson@grammatech.com)
Coauthor Denis Gopan (gopan@grammatech.com)
This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of
the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:gnelson@grammatech.com
mailto:gopan@grammatech.com

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

2

Reverse Architecting

§ Goals
– Recover high level architecture from binary
– Compare design with implementation

§ Outcomes
– Advanced state of the art in recovery algorithms
– Developed novel algorithm for des-impl

comparison
– Tools effectively applied in DARPA ARCOS

program

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

3

Outline

§ Value of reverse architecting
§ Role in reverse-engineering toolchain
§ Componentization research
§ Design-Implementation mapping research
§ Conclusions

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

4

Defining the Problem

§ Assurance-adjacent example
– Commercial device (e.g., PLC) in critical

industry
– Want to evaluate fitness (safety & security)
– Vendor doesn’t offer source code,

keeps implementation details proprietary
– How can you assess based on binary only?

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

5

Goal: Recover High-Level Architecture

§ Disassembly / decompilation (Ghidra): too low level
– Recovering functions is not enough

§ What we actually want:
– Components: subsystems, libraries, modules, classes
– Relations: containment, communication, etc.

§ Module A is comprised of modules B, C, and D
§ Module A calls module B’s routines
§ Modules A and B share common data
§ ...

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

6

Goal: Align Design to Implementation

§ When you have design or specifications
(or, if you are willing to define them)
– How do they match the implementation?
– Traceability can show you

§ Where is security-critical code?
§ Which subsystem in the design is impacted by a

CWE?
§ Was code included that was not in the specification?
§ Are there requirements which are not implemented?

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

7

Outline

§ Value of reverse architecting
§ Role in reverse engineering toolchain
§ Componentization research
§ Design-Implementation mapping research
§ Conclusions

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

8

REAFFIRM Toolchain Overview

EXTRACT BINARY PREP ANALYSIS

FUZZINGREFACTS
(IR RELATIONAL DB)

COMPONENT
EXTRACTION

Analysis Pipelines:
GTIRB, CSurf/GTx,
Ghidra
UI: Jupyter
Notebooks, CLI, API
Fuzzing: AFL/QEMU

UNDERSTAND
Capability Labeling
Componentization

Reverse Architecting

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

9

UPSat (Example) Introduction
Most examples drawn from
“UPSat”
§ University of Patras Satellite
§ Small “CubeSat” from QB50

project
§ Four embedded STM32

processor boards
§ Open source, C-language
§ Mostly bare-metal
§ No system design artifacts

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://space.skyrocket.de/doc_sdat/upsat.htm

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

10

Outline

§ Value of reverse architecting
§ Role in reverse engineering toolchain
§ Componentization research
§ Design-Implementation mapping research
§ Conclusions

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

11

What is a “Component”?
§ A: Component Grouped by Layer

– Single level of abstraction
– Possibly low similarity of purpose
– Example: hardware abstraction layer (HAL), Ethernet driver

§ B: Component Grouped by Function
– Single conceptual “purpose”
– May represent several “layers” of abstraction
– Example: subsystem, library (network stack, encryption, …)

§ Design could be A, B, or a mixture of both
§ Sometimes reflected in language paradigms (more

later…)

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

12

Binary Componentization

§ Identify related functionality
§ Create containment tree

– Binary, at root, contains everything
– Functions at leaf nodes (treated as “atoms”)
– Components (internal nodes) are inferred

§ We also infer communication (not discussed)

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

13

Evaluating Componentization

§ Related question: What is a good design?
– Different designers take different approaches
– Only agreement in literature: this is hard [1, 3]

§ To evaluate performance, need a “ground
truth”
– Must be easy to generate for test binaries
– Must have some similarity to developer’s design
– Use map file as simple approximation (as in [4])

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

14

Evaluating Componentization
§ Map file supplies these testable properties:

– Grouping of functions in source modules
– Organization of source modules (from path names)
– Libraries – functions and object files

§ Measurement ambiguity: libraries
– Often one function per compilation unit (source file);

allows linker to discard unused library functions
– Do we treat CU or Library as the “correct”

component?
– Decision: Evaluate algorithms both ways

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

15

Evaluating Componentization

A lot of detail even
for a “simple” binary!

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

16

Componentization Algorithms

§ Allow for multiple algorithms
§ Each should produce comparable graph

structure
§ Currently implemented:

– Map file: use for ground truth; also useful as end-user tool
– Compilation Units: crude (but stable) linear partitioning
– GT-BCD: graph clustering based on multiple features

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

17

Quick Comparison of Algorithms
Class Feature CompUnit BCD (replic.) GT-BCD

Code Locality
Boolean Adjacency X 0.237 0.126

Weighted proximity 0.100

Function calls
Direct X 0.362 0.152

Sibling 0.218

Data references Sibling 0.400 0.153

Naming (if avail.) Name Prefix X 0.250

UPSat Result
(Precis%|Recall%)

Matched by CU 40.4|91.7 25.7|49.2 48.8|54.6

Matched by Library 75.0|35.4 42.7|17.0 65.8|15.3

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

18

Componentization: CompUnits Algorithm
§ Assume compilation units are contiguous,

look for boundaries
§ Relies heavily on proximity and naming

– Proximity: CU is contiguous (but may have some loosely
related functions); sliding window

– Naming: tools (C++) group classes and name spaces;
developers often use common prefixes (“HAL_GPIO_*”)

§ Works well for some binaries (incl. UPSat)
§ Poor performance w/o names, or if binary

reordered

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

19

Componentization: GT-BCD Algorithm
§ Inspired by BCD work of Karande et al. [4]
§ Superimposed, weighted subgraphs

– Allows for multiple, individually weighted features
– Easy to add/experiment with new features

§ Community detection algorithm
– Agglomerative clustering [2,6,7]

§ Original targets: C++ binaries for Windows, Linux
§ Original BCD less effective for embedded binaries

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

20

Programming Language Bleed-through

§ Karande’s BCD works well for OOP (C++, Ada)
§ Does not work well for pure procedural (C,

assy)
§ CG and DRG efficacy improved by OOP’s VFT
§ Strict adjacency too restrictive for some code
§ GT-BCD explored other compensating features

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

21

New GT-BCD Features
§ Window adjacency, proportional adjacency

– Helps with compile/link optimization, small ‘helpers’
§ Naming (prefix, edit distance) when available

– Weak by itself but plays well with others
§ Sibling Calls

– Karande BCD has “A→C ⇒ A∼C”
– “Signal” for calls within module, but

“noise” for calls into module, e.g., API
– GT-BCD adds “A→C & B→C ⇒ A∼B”

§ Weighting: Used gradient search to optimize

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

22

Graph Clustering Approaches
§ Newman algorithm: original, slow O(e*v+v2)
§ Leiden algorithm: shown to avoid certain non-

optimal partitions, and empirically fast
§ Clauset-Newman-Moore (CNM): fast on sparse

networks (e ≈ v and d ≈ log v), dendrogram result
§ Variants to specify number of clusters or layers
§ Allows tuning if architecture is known
§ All of these are non-deterministic (greedy algs.)

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.48550/arXiv.cond-mat/0309508
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1103/PhysRevE.70.066111

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

23

GT-BCD Recreates Design from Binary

§ Design structure can be recovered
§ Not identical to map, but plausible similarity
§ Quantitative similarity measurement non-trivial

– Grouping, levels, over/under-splitting, etc.

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

24

Outline

§ Value of reverse architecting
§ Role in reverse engineering toolchain
§ Componentization research
§ Design-Implementation mapping research
§ Conclusions

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

25

Why Mapping Matters

§ If you already have the design, why map?
– Requirements traceability beyond source into binary
– Vulnerability traceability back to design
– Detection of code not traceable to requirements
– Software Reflexion Models [5] shows many uses…

but it assumed that the map had to be done by
hand

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://dl.acm.org/doi/pdf/10.1145/222124.222136

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

26

Design-to-Implementation Mapping

§ This stage assumes design or requirements exist
§ How do design entities D…

map to implementation entities I?
– Assume we know tree roots: “system” == “binary”
– Assume D leaves are similar to I leaves
– Natural language content (D text, I strings/capabilities)
– Structural similarity (hierarchy, branching)
– Structural content (e.g., “API consists of 8 functions”)

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

27

Mapping Challenges
§ From specification

– Stale or reconstructed specification: likely inaccurate
– Under-specification: e.g., no explicit mention of libraries

§ From componentization
– Over-splitting: binary modules are too small
– Under-splitting: binary modules are too large
– Instability: non-deterministic clustering algorithms
– Binary obfuscation: shuffled or self-modifying code

§ From either input
– Components with zero semantic information (all equivalent)

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

28

Mapping Approaches

§ “Brute force” graph isomorphism
– Too rigid for real-world mappings; worst-case intractible

§ Simple tree traversal
– Easy top-down process, but fails to incorporate bottom-up

info
§ Models of human analogical reasoning

– Examples: SME, ACME, Sapper
– Core principle: combining semantic and structural inputs
– AI-driven approaches that retain explainability

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/0004-3702(89)90077-5
https://doi.org/10.1207/s15516709cog1303_1
https://dl.acm.org/doi/10.5555/1624162.1624197

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

29

ACRE Algorithm

§ Algorithm for Component Reflexion Estimation
1. Graph preparation
2. Semantic matching of D to I (structure-

constrained)
3. Tracing parentage of each D and I component
4. Propagate structural/analogical relations
5. Combine semantic and structural confidence
6. Best-first, implementation-driven map assignment

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

30

Example UPSat Mapping

Design ßà Implementation

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

31

D-to-I Mapping Takeaways

§ The process is non-trivial
§ Quality of componentization matters
§ Structural and semantic information both

needed
§ Cognitive models of analogy provide insights
§ Can provide useful ability to:

– Determine design-level impact of binary CWEs
– Identify compiled-in code not present in

requirements

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

32

Outline

§ Value of reverse architecting
§ Role in reverse engineering toolchain
§ Componentization research
§ Design-Implementation mapping research
§ Conclusions

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

33

Conclusions/Future Work

§ Recovering architecture from binary is
– Valuable
– Complex
– Achievable

§ Possible future research
– Other architectural relations: communication, specialization,

etc.
– Deeper semantic recovery
– Better methods for evaluating ground truth
– Use of LLMs in structure matching

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

34

Questions

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

35

References
1. Anquetil, N. and Lethbridge, T.C., 1999. “Experiments with clustering as a software remodularization method.” In

Proceedings of Sixth Working Conference on Reverse Engineering (Cat. No. PR00303) (pp. 235-255). IEEE.
https://doi.org/10.1109/WCRE.1999.806964

2. Clauset, A., Newman, M.E.J., and Moore, C., 2004. “Finding community structure in very large networks.” In Physical
Review E, 70(6), p. 066111. https://doi.org/10.1103/PhysRevE.70.066111

3. Clayton R, Rugaber S, Wills L., 1998. “On the knowledge required to understand a program.” In Proceedings of Fifth
Working Conference on Reverse Engineering (Cat. No. 98TB100261) (pp. 69-78). IEEE.
https://doi.org/10.1109/WCRE.1998.723177

4. Karande, V. et al., 2018. “BCD: Decomposing binary code into components using graph-based clustering.”
In Proceedings of the 2018 on Asia Conference on Computer and Communications Security (pp. 393-398).
https://doi.org/10.1145/3196494.3196504

5. Murphy, G.C., Notkin, D. and Sullivan, K., 1995. “Software reflexion models: Bridging the gap between source and
high-level models.” In Proceedings of the 3rd ACM SIGSOFT Symposium on Foundations of Software Engineering (pp.
18-28). https://dl.acm.org/doi/pdf/10.1145/222124.222136

6. Newman, M.E., 2004. “Fast algorithm for detecting community structure in networks.” Physical review E, 69(6), p.
066133. https://doi.org/10.48550/arXiv.cond-mat/0309508

7. Traag, V.A., Waltman, L. and Van Eck, N.J., 2019. “From Louvain to Leiden: guaranteeing well-connected
communities.” Sci. Rep. 9, 5233. https://doi.org/10.1038/s41598-019-41695-z

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1109/WCRE.1999.806964
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1109/WCRE.1998.723177
https://doi.org/10.1145/3196494.3196504
https://dl.acm.org/doi/pdf/10.1145/222124.222136
https://doi.org/10.48550/arXiv.cond-mat/0309508
https://doi.org/10.1038/s41598-019-41695-z

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

36

Backup Slides

§ REAFFIRM summary
§ Tables of Feature Performance
§ Attempted features that were ruled out
§ Mapfile componentization details
§ ACRE algorithm implementation details

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

37

REAFFIRM Introduction
§ REAFFIRM: Reverse Engineer, Analyze, and Fuzz

FIRMware
– Supports wide variety of firmware and software
– Unpacks, extracts, rehosts, and harnesses
– Supports testing / fuzzing of firmware on commodity hardware
– Infers high-level function capabilities (presented at HCSS-2023)

§ REAFFIRM is a toolbox
§ Reverse Architecting is now being added

– Binary componentization
– Design-to-implementation mapping

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

38

Factor: Sequence Graph
Binary Lang/ISA Map #

Fns
Bin #
Fns SG-CU P SG-CU R SG-CU

F1 SG-Lib P SG-Lib R SG-Lib
F1

OpenDPS C – ARM T32 244 647 82.6% 5.93% 11.1% 88.4% 1.55% 3.05%

UPSat C – ARM T32 422 578 63.1% 8.41% 15.2% 74.0% 4.02% 7.69%
(propriet.) C – ARMv5TE 453 510 59.4% 4.87% 9.11% 84.4% 0.08% 0.16%

bbox-x64-
dyn

C++ - x64
dynamic linked 2877 3416 59.4% 3.83% 7.30% 74.5% 0.07% 0.14%

bbox-mips C++ - MIPS32 3744 4193 59.4% 4.87% 9.11% 84.4% 0.08% 0.16%

bbox-x64-
stat

C++ - x64
static linked 4330 5661 59.8% 5.11% 9.54% 82.5% 0.08% 0.16%

PX4 C++ - ARM T32 9666 8514 15.5% 0.81% 1.61% 16.6% 0.39% 0.77%
(propriet.) Ada - PPC 14944 13299 78.7% 0.01% 0.02% 78.7% 0.01% 0.02%

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

39

Factor: Call Graph
Binary Lang/ISA Map #

Fns
Bin #
Fns CG-CU P CG-CU R CG-CU

F1 CG-Lib P CG-Lib R CG-Lib
F1

OpenDPS C – ARM T32 244 647 4.73% 0.56% 1.09% 5.72% 0.17% 0.33%

UPSat C – ARM T32 422 578 22.4% 2.11% 3.87% 40.0% 1.53% 2.96%

(propriet.) C – ARMv5TE 453 510 21.1% 0.97% 1.88% 59.8% 0.71% 1.41%

bbox-x64-
dyn

C++ - x64
dynamic linked 2877 3416 23.7% 3.10% 5.73% 61.3% 0.11% 0.23%

bbox-mips C++ - MIPS32 3744 4193 47.4% 2.76% 5.27% 83.2% 0.05% 0.11%

bbox-x64-
stat

C++ - x64
static linked 4330 5661 18.7% 2.83% 4.98% 61.0% 0.10% 0.21%

PX4 C++ - ARM T32 9666 8514 7.3% 0.34% 0.68% 9.9% 0.21% 0.41%

(propriet.) Ada - PPC 14944 13299 71.6% 0.01% 0.02% 71.6% 0.01% 0.02%

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

40

Factor: Data-Reference Graph
Binary Lang/ISA Map #

Fns
Bin #
Fns CG-CU P CG-CU R CG-CU

F1 CG-Lib P CG-Lib R CG-Lib
F1

OpenDPS C – ARM T32 244 647 13.6% 3.11% 5.97% 13.8% 0.77% 1.52%

UPSat C – ARM T32 422 578 38.2% 6.12% 10.6% 61.1% 3.99% 7.49%

(propriet.) C – ARMv5TE 453 510 60.5% 14.5% 23.6% 78.5% 4.85% 9.16%

bbox-x64-
dyn

C++ - x64
dynamic linked 2877 3416 5.86% 26.5% 10.1% 93.6% 6.06% 11.4%

bbox-mips C++ - MIPS32 3744 4193 1.33% 30.6% 3.03% 58.9% 15.2% 25.1%

bbox-x64-
stat

C++ - x64
static linked 4330 5661 5.11% 24.7% 9.11% 86.8% 4.72% 8.98%

PX4 C++ - ARM T32 9666 8514 - - - - - -

(propriet.) Ada - PPC 14944 13299 69.3% 0.11% 0.22% 69.3% 0.11% 0.22%

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

41

GT-BCD: what didn’t work

§ Some things tried worked poorly
– Dropping SG edges between very large functions (“size-

limited” adjacency)
– “Rare instruction” similarity (e.g., uses floating point) is not a

strong signal, and is very difficult to compute

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

42

Componentization: Mapfile algorithm
§ Built as a componentization algorithm

– Gives output in a consistent form to other algorithms
– Can be applied by user if mapfile is available

§ Support for multiple formats (extensible)
– GCC, LLVM, XLink

§ Recovers:
– Function grouping in object modules
– Object module grouping in libraries
– Higher level structure from source directory organization

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

43

ACRE Algorithm (1)

§ Graph preparation (improve similarity)
– Remove leaf function nodes (not present in D) from

I

– For mapfile CPZN, remove single-function object
files
§ D never says “place memcpy() in memcpy.c”
§ This is an implementation detail to support link

optimization

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

44

ACRE Algorithm (2)

§ Semantic matching of D to I
§ Information for each graph created when built

– D: Names (N) and module sizes (MS)
– I: Names (N), strings (S), capabilities (C), module sizes

(MS)
§ Compute confidence levels (Jaccard-like)

– NxN, NxS, NxC, MSxMS
– NxC is “library aware” – knows what cap’s library

represents
§ Weight and combined (mainly, MSxMS lower

weight)

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

45

ACRE Algorithm (3)

§ Tracing parentage of each D and I component
§ Assume our confidence in D is total (conf=1.0)
§ Assume we are less sure about I (conf=0.25,

arbitrary magic)
§ Trivial but we need values for later calculation

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

46

ACRE Algorithm (4)

§ Propagate structural relations
§ Similiar to “squaring” in Sapper analogy model

§ Given CD ≅ CI & parent(PD, CD) & parent(PI, CI)
impute PD ≅ PI with product of confidence levels

§ If multiple terms impute same parent “combine”
§ Explored: max, mean, saturating sum, inverse

product, geometric mean
§ Not highly sensitive; max works OK and is fast

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

47

ACRE Algorithm (5)

§ Combine semantic and structural confidence
§ Separate inputs must be combined

§ Again, multiple possibilities, but max is OK
§ Assign confidence = 1.0 for knowns: SysD =
BinI
§ Collect final numbers for each proposed map
§ At this point there are multiple candidates

https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2024 Grammatech, Inc. This work is licensed under CC BY-NC-ND 4.0
Distribution Statement A. Approved for public release: distribution is
unlimited.

48

ACRE Algorithm (6)

§ Best-first, implementation-driven map assignment
– Chose mapping with highest score
– Add this mapping to final output
– Remove from pool all mappings with this I component

§ Disallowing N:1 mappings
– Downgrade all mappings with this D component

§ 1:N mappings possible, but 1:1 is preferred
§ Uses magic value 0.9: “1:2 maps are 90% as likely as 1:1

maps”

https://creativecommons.org/licenses/by-nc-nd/4.0/

