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To start ...

Is this a cube or a Polygon ?

- Compute the Volume of this cube =⇒ Need of 3-D geometry

- Compute the Surface or Volume of this polygon =⇒ Need of 2-D geometry, but
Volume has no meaning

- However, Surface and Volume of the cube are computable using 2-D geometry
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Context

System models

- Different approaches used to model systems

- stateful e.g. state-transition systems
- stateless e.g synchronous languages

- Prescriptive models

Modelling languages

- Supported by different modelling languages

- Main objective =⇒ reason on system models to establish properties reflecting the mod-
elled requirements.
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Context

How rich is a modelling language from different perspectives ?

- expressivity

- semantics

- verification and validation capabilities

- · · ·
How modelling languages can be enriched ?

- Ad’hoc modelling languages, DSLs

- extension

- transformation

- composition

- · · ·
Encountered problems
Modelling requires to handle

- heterogenity

- domain knowledge and application domain

- standards and regulations

- · · ·
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Context

State based formal methods
Capability of formal state-based methods

- to model complex systems

- reason about them to establish properties reflecting the modelled requirements.

In particular,

- ensuring system safety through the verification of invariant properties

- each reachable state of the modelled system fulfills these invariants, i.e. the system state
is always in a safe region and never leaves it

- verification is based on an induction principle over traces of transition systems

Figure: State-transition systems
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Context

State based formal methods

State variables are modified by actions
relying on

- the generalised assignment operation
based on the “becomes such that” BAP

- noted St : | BAP(St, St′)

- defining a state transition

- ASM rules, substitutions or events in B
and Event-B, Hoare triples, Guarded
Commands (GCL), operations in RSL
and VDM , actions in TLA+, schemas in
Z, . . . Figure: State-transition systems - Trace-based

semantics
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Context

Domain knowledge
Modelling of complex systems in system engineering relies on domain knowledge

- shared and reused in system models

- definitions as well as domain-specific properties.

- descriptive models

Two different types of Domains
- Once and for all formalised domains, stable and reusable

- mathematics: diff. eq., control theory, probabilities, etc.
- physics, flight dynamics, units, etc.
- more generally, external theories related to designed systems

- System dependent formalised domains

- describe system concepts
- ”instantiations”, ”specialisations” of above theories with additional specific con-

straints
- Examples: valves, tanks, wheels, etc.

Standards, regulations, ontologies, ...
- defined independently of any specific system model

- designed asynchronously 8 / 38
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Context

Domain knowledge

Modelling of complex systems in system
engineering relies on domain knowledge

- formalised as algebraic theories with
data types, operators, axioms

- Operators record allowed
transformations

- and theorems proved independently of
the designed system models.

Partial definitions play a key role

This idea is not new !
Figure: Algebraic data-types definitions
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Model Annotation

Composing system models and domain knowledge - Model Annotation
How ?

- By borrowing domain specific theories in system design formal models. It brings

- partial operators associated to well-definedness conditions
- Hypotheses, Theorems and proof rules

- By annotating models with references to domain knowledge models

Transitions are seen as partially defined operations

Figure: States and transitions linked to types and operators 10 / 38
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The case of state-based formal methods with Event-B

Main features
Support for

- expressive data-types

- partially defined operators

- Well-definedness (WD) conditions

- Automatic proof obligation generation

The proposed framework

- Event-B can be extended to handle domain theories using its Theory component

- Transfer and Reuse, in the system design models, the proofs achieved on the theory side

- Keep using the Event-B invariant preservation mechanism while referring to externally
defined data-types
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Event-B: Basics

Event-B Structure and Proofs

Event-B: Models and Machines

- a state based formal method with proof and refinement

Context Machine

CONTEXT Ctx MACHINE MA

SETS s SEES Ctx

CONSTANTS c VARIABLES xA

AXIOMS A INVARIANTS IA(xA)

THEOREMS Tctx THEOREMS Tmch(xA)

END VARIANT V (xA)

EVENTS

EVENT evtA

ANY αA

WHERE GA(xA, αA)
THEN

xA :| BAPA(

αA, xA, xA
′

)
END

. . .
END

- set theory, basic types (integers, booleans) and
their associated operators

- first order logic

- explicit state formalised as a set of state vari-
ables

- initialisation event and guarded events to
record state changes based on BAP (Before-
After Predicates)

- inductive reasoning on event traces

- invariant preservation and variant decreasing
for reachability

- Rodin open source IDE
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Event-B: Basics

Event-B Structure and Proofs

Event-B: Proof Obligations

- a state based formal method with proof and refinement

(1) Theorems (THMCtx) A ⇒ Tctx A

(2) (THMMch) IA(xA) ⇒ Tmch(xA)

(3) Initialisation (INIT) A ∧ GA(αA) ∧ BAPA(αA, xA′)
⇒ IA(xA′)

(4) Invariant A ∧ IA(xA) ∧ GA(xA, αA)

preservation (INV) ∧BAPA(xA, αA, xA′) ⇒ IA(xA′)
(5) Event A ∧ IA(xA) ∧ GA(xA, αA)

feasibility (FIS) ⇒ ∃xA′ · BAPA(xA, αA, xA′)
(6) Variant A ∧ IA(xA) ∧ GA(xA, αA)

progress (VAR) ∧BAPA(xA, αA, xA′)
⇒ V (xA′) < V (xA)

- Automatic generation of proof obliga-
tions.

- Rodin is equiped with automatic/in-
teractive provers, SMT solvers, Model
checkers, animators, etc.

Proof obligations

- A set of well-definedness POs are associated to Event-B constructs
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Theories: definition

Event-B theories

Core Event-B is not equiped with

- rich data-types and associated operators

- in particular, there is no

- reals NOR continuous features
- capability to introduce new data types
- possibility to generate new proof obligations

Event-B theories as a support for Event-B extensions

- introduced in 2010’s by JR. Abrial, M. Butler, I. Maamria, . . .

- support for defining new data types

- constructive or axiomatic

- tool supported as a PlugIn of the Rodin platform

14 / 38



Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Theories: definition

Event-B theories

THEORY Th IMPORT Th1, ...

TYPE PARAMETERS E ,F , ...

DATATYPES
T1(E , ...)≡ cstr1(p1:T1, ...)|...

OPERATORS
Op1 nature (p1: T1, ...)

well−definedness
WD(p1, ...)

direct definition
Expr1
. . .

AXIOMATIC DEFINITIONS
OPERATORS

AOp2 nature (p1: T1, ...): Tr
well−definednessWD(p1, ...)

WD(p1, ...)
. . .

AXIOMS
Ax1, ...

THEOREMS
Th1, ...

END

- Algebraic Theories as extensions for Event-B basic
language

- Data types, operators with WD conditions

- Constructive definitions and axiomatic definitions

- Relevant Theorems

- proof rules: Inference and rewrite rules

- Theory Plug-in development environment and associated
proof environement

- Proof rules can be included in the Rodin proof tactics

- Library for mathematical and domain-specific theories
(i.e., Reals, differential equations etc.)
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Well-Definedness (WD)

Well-Definedness (WD)

Event-B: Well-definedness Proof obligations
According to J.R. Abrial, Well-Definedness describes the

circumstances under which it is possible to introduce new term symbols by means of conditional
definitions in a formal theory as if the definitions in question were unconditional, . . . It avoids
describing ill-defined operators, formulas, axioms, theorems, and invariants.

- Avoidance of ill-defined operators, formulas, axioms, theorems, and invariants.

- Each formula is associated to well-definedness POs that ensure that the formula is
well-defined and that two-valued logic can be used (M. Leuschell - IFM’2020).

- An inductively defined WD predicate WD(f ) is associated with each formula f

- Example. Let a and b be two integers, f ∈ D 7→ R, then

• WD(a÷ b) ≡WD(a) ∧WD(b) ∧ b 6= 0

• WD(f (a)) ≡WD(a) ∧ f ∈ D 7→ R ∧ a ∈ dom(f )
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Well-Definedness (WD)

Well-Definedness (WD)

Event-B Theories: Well-definedness Proof obligations

- Each defined operator is associated to a (WD) condition ensuring its correct definition.

- When it is applied (in the theory or in an Event-B machine or context), this WD
condition generates a PO requiring to establish that this condition holds

- The theory designer defines these WD conditions for the partially defined operators.

- They are then added to the native Event-B WD POs

- Once the WD POs are proved, they are added as hypotheses in the proofs of the other
POs

New proof obligations

• Use of the WD mechanism

• When an operator is defined/applied, its WD PO is automatically generated
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Principle

State changes and Invariants

- State change (transition) is viewed as a partial function

Trans : State 7→ P(State) or Trans : State 7→ State

- An invariant restricts state changes to safe states

- A well-defined partial function, on the set of safe states SafeSt as

Trans Inv : SafeSt 7→ P(State)

- To preserve the invariant, one has to establish that:

ran(Trans Inv ) ⊆ P(SafeSt )

.

An alternative approach to prove invariants of Event-B system models

- A data type T for State + operators ⇒ well-defined partial functions

- Each operator Op(x1 : T1, x2 : T2, . . . , xn : Tn) of type T is associated to a
WD(x1, x2, . . . , xn) stating that x1, x2, . . . , xn ∈ dom(Op)

- Safe state changes are defined according to a given property independently of any model
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Principle

Step 1. Definition of an algebraic data-type
Formalise domain knowledge

- a data-type corresponding to the type of a state variable

- a set of operators associated to well-Defined (WD) conditions

- relevant theorems guaranteeing properties of the data-type

- =⇒ The theorems are proved once and for all.

Step 2. Formalise a system model
Annotate states and transitions of system models

- State variables are typed using the defined data-type =⇒ State variables annotation

- In Events, state variables are manipulated using the operators associated to the data-type
=⇒ Events and transitions annotation

- WD POs associated to the operators are automatically generated

- Theorems of the theory hold at the machine level (for free)
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A generic algebraic theory for the manipulated type

An algebraic theory for (parameterised) data-type T

- A set of operators manipulating data-type T (ArgsType) elements

- Specific properties associated to the data-type defined as a predicate

THEORY Theo
TYPE PARAMETERS ArgsTypes
DATATYPES

T(ArgsTypes) ≡ Cons(args : ArgsTypes) | . . .
OPERATORS

. . .
Opi p r e d i c a t e (el : T (ArgsType), args : ArgsTypes )

w e l l−d e f i n e d n e s s c o n d i t i o n WD Opi(args)
d i r e c t d e f i n i t i o n Op Expi (el, args)

. . .
WD Opi p r e d i c a t e (args : ArgsTypes )

d i r e c t d e f i n i t i o n WD Op Expn(el, args)
. . .

P r o p e r t i e s p r e d i c a t e (el : T (ArgsTypes))
d i r e c t d e f i n i t i o n properties Exp(el)

. . .
THEOREMS

ThmTheoOp1 :
∀x, args · x ∈ T (ArgsTypes) ∧ args ∈ ArgsTypes∧

WD Op1(args) ∧ Op1(x, args) ⇒ Properties(x)
. . .

ThmTheoOpn :
∀x, args · x ∈ T (ArgsTypes) ∧ args ∈ ArgsTypes∧

WD Opn(args) ∧ Opn(x, args) ⇒ Properties(x)

Theorems

- guarantee that an operation
does not move to a situa-
tion that does not satsify the
Properties predicate

Proofs

- Theorems must be proved for
all the operators that preserve
the properties

- Proofs are made using the
provers offered by the frame-
work (may be external ones)
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An instantiation context of the generic theory

An Event-B context with

- A data-type T (s)

- Instantiated theorems

CONTEXT Ctx
SETS s
CONSTANTS c
AXIOMS . . .
THEOREMS

ThmTheoOp1Inst : ∀x, args · x ∈ T (s) ∧ args ∈ s∧
WD Op1(args) ∧ Op1(x, args) ⇒ Properties(x)

. . .
ThmTheoOpnInst : ∀x, args · x ∈ T (s) ∧ args ∈ s∧

WD Opn(args) ∧ Opn(x, args) ⇒ Properties(x)

Proofs

- Theorems are trivially proved (type
checking)
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An Event-B model manipulating data-type elements

An Event-B Machine with

- a state variable x of type T (s) and specific invariants

- a typing invariant
- by AllowedOper , only defined operators manipulate state x provided their WD hold

MACHINE Machine SEES Ctx
VARIABLES x

INVARIANTS
TypingInv : x ∈ T (s)
AllowedOper : ∃∃args · args ∈ s ∧ (WD Op1(args) ∧ Op1(x, args)) ∨ . . . ∨ (WD Opn(args) ∧ Opn(x, args))

THEOREMS
SafThm : Properties(x)

EVENTS
Evt1 =̂ . . . Evtn =̂

ANY α ANY α
WHEN WHEN

grd1 : α ∈ s ∧WD Op1(α) grd1 : α ∈ s ∧WD Opn(α)
THEN THEN

act1 : x :| Op1(x′, α) act1 : x :| Opn(x′, α)
END END

END

- The SafThm theorem states that the properties Properties hold
- Its proof is straightforward: use of the instantiated theorems ThmTheoOpi Inst

(context) + the modus-ponens (⇒-elimination rule)
22 / 38
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State-based properties

Domain models as ontologies

Design of Critical Interactive Systems

- Descriptive standards with rules and regulations for CIS

- Designers must conform to the standards

- ARINC2 661 standard describes Cockpit Display System (CDS) standard for communi-
cation protocols between interface objects and aircraft systems

- Widespread use in the industry ⇒ i.e., Airbus A380 and Boeing B787.
- 800 pages of definitions and requirements for the CDS and its graphical objects
- In Our work ⇒ we focus on the widget aspects (chapter 3.0).

Several developed case studies: Weather Radar System (WXR), Traffic Collision Avoid-
ance System (TCAS), ...

Modelling ARINC661 as an ontology

- Need to define ontologies in Event-B

⇒ Define an Event-B Theory

- CIS components

- are instances of the ontology
- manipulated by Event-B models

2Aeronautical Radio, Incorporated
23 / 38



Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

State-based properties

Ontologies as Event-B theories

Ontologies Modelling Language (OML) - DATATYPE

THEORY OntologiesTheory
TYPE PARAMETERS

C ,
P ,
I

DATATYPES
Ontology(C , P, I ) ≡
consOntology(

classes : P(C) ,
properties : P(P) ,
instances : P(I ) ,
classProperties : P(C × P) ,
classInstances : P(C × I ) ,
classAssociations : P(C × P × C) ,
instanceAssociations : P(I × P × I )

)

OPERATORS
. . .
END

- Ontology(C, P, I) : a generic data type
for classes, properties, instances.

- Specifying class properties, class
associations and classe intances

- Constrained instantiation:
instancePropertyValues &
isWDInstancePropertyValues.

- 37 operators
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State-based properties

Ontologies as Event-B theories

Ontologies Modelling Language (OML) - Operators

THEORY OntologiesTheory
. . .
OPERATORS

isWDInstancesAssociations p r e d i c a t e (o : Ontology(C , P, I ))
w e l l−d e f i n e d n e s s isWDClassProperites(o) ∧ isWDClassInstances(o) ∧ isWDClassAssociations(o)
d i r e c t d e f i n i t i o n

instanceAssociations(o) ⊆ instances(o)× properties(o)× instances(o) ∧
instanceAssociations(o) ⊆ {i1 7→ p 7→ i2 | i1 ∈ I ∧ p ∈ P ∧ i2 ∈ I ∧

i1 7→ p 7→ i2 ∈ instances(o)× properties(o)× instances(o) ∧
(∃c1, c2 · c1 ∈ C ∧ c2 ∈ C ∧ {c1, c2} ⊆ getClasses(o)

⇒ (c1 7→ p 7→ c2 ∈ getClassAssociations(o) ∧ p ∈ getClassProperties(o)[{c1}] ∧
i1 ∈ getClassInstances(o)[{c1}] ∧ i2 ∈ getClassInstances(o)[{c2}]))}

getInstanceAssociations e x p r e s s i o n (o : Ontology(C , P, I ))
w e l l−d e f i n e d n e s s isWDInstancesAssociations(o)
d i r e c t d e f i n i t i o n instanceAssociations(o)

isWDOntology p r e d i c a t e (o : Ontology(C , P, I ))
d i r e c t d e f i n i t i o n

isWDClassProperties(o) ∧ isWDClassInstances(o) ∧
isWDClassAssociations(o) ∧ isWDInstancesAssociations(o)

CheckOfSubsetOntologyInstances p r e d i c a t e (o : Ontology(C , P, I ), ipvs : P(I × P × I ))
w e l l−d e f i n e d n e s s isWDOntology(o)
d i r e c t d e f i n i t i o n

ipvs ⊆ {i1 7→ p 7→ i2 | i1 ∈ I ∧ p ∈ P ∧ i2 ∈ I ∧ i1 7→ p 7→ i2 ∈ instances(o)× properties(o)×
instances(o) ∧ . . .}

isA p r e d i c a t e (o : Ontology(C , P, I ), c1 : C , c2 : C) · · ·
. . .

THEOREMS
. . .

END
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State-based properties

Ontologies as Event-B theories

Ontologies Modelling Language (OML) - Theorems
Useful theorems are proved.

THEORY OntologiesTheory
TYPE PARAMETERS

C ,
P ,
I

DATATYPES
Ontology(C , P, I )
. . .

OPERATORS
. . .

THEOREMS
thm1 : ∀o, c1, c2, c3 · o ∈ Ontology(C , P, I ) ∧ isWDOntology(o) ∧ c1 ∈ C ∧ c2 ∈ C ∧ c3 ∈ C∧

ontologyContainsClasses(o, {c1, c2, c3})
⇒ (isA(o, c1, c2) ∧ isA(o, c2, c3)⇒ isA(o, c1, c3))

END
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State-based properties

The ARINC 661 standard as an ontology

Formal Definition of ARINC 661: Instantiation of the Theory of ontologies

- ARINC661Theory definition =⇒ Axiomatic definition of the operators

- Classes, properties and instances for ARNINC 661 are introduced

- 54 operators and 17 axioms were needed for chapter 3 of the ARINC 661 standard

THEORY ARINC661Theory
IMPORT THEORY PROJECTS OntologiesTheory
AXIOMATIC DEFINITIONS ARINC661Axiomat i sat ion :
TYPES ARINC661Classes , ARINC66Propert ies , ARINC661Instances
OPERATORS
ARINC661 BOOL e x p r e s s i o n ( ) : ARINC661Classes
A661 TRUE e x p r e s s i o n ( ) : ARINC661Instances
A661 FALSE e x p r e s s i o n ( ) : ARINC661Instances
A661 EDIT BOX NUMERIC ADMISSIBLE VALUES e x p r e s s i o n ( ) : P(ARINC661Instances)
CheckButtonState e x p r e s s i o n ( ) : ARINC661Classes
Label e x p r e s s i o n ( ) : ARINC661Classes
RadioBox e x p r e s s i o n ( ) : ARINC661Classes
CheckButton e x p r e s s i o n ( ) : ARINC661Classes
hasChildrenForRadioBox e x p r e s s i o n ( ) : ARINC66Properties
hasCheckButtonState e x p r e s s i o n ( ) : ARINC66Properties
SELECTED e x p r e s s i o n ( ) : ARINC661Instances
UNSELECTED e x p r e s s i o n ( ) : ARINC661Instances
isWDRadioBox p r e d i c a t e (o : Ontology(ARINC661Classes, ARINC66Properties, ARINC661Instances))

w e l l−d e f i n e d n e s s isWDOntology(o)
isWDARINC661Ontology p r e d i c a t e (o : Ontology(ARINC661Classes, ARINC66Properties, ARINC661Instances))
. . .
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State-based properties

The ARINC 661 standard as an ontology (Cont.)

Formal Definition of ARINC 661: Instantiation of the Theory of ontologies

AXIOMS
ARINC661ClassesDef :

partition(ARINC661Classes, {Label}, {RadioBox}, {CheckButton}, {CheckButtonState}, . . . )
ARINC66PropertiesDef : partition(ARINC66Properties, {hasLabelStringForLabel},

{hasChildrenForRadioBox}, {hasCheckButtonState}, {hasLabelForCheckButton}, ...)
ARINC661InstancesDef : partition(ARINC661Instances, {A661 TRUE}, {A661 FALSE}, {SELECTED},

{UNSELECTED}, LabelInstances, RadioBoxInstances, CheckButtonInstances, ...)
consARINC661OntologyDef : ∀ii, cii, ipvs · ii ∈ P(ARINC661Instances) ∧

cii ∈ P(ARINC661Classes × ARINC661Instances) ∧
ipvs ∈ P(ARINC661Instances × ARINC66Properties × ARINC661Instances) ∧

wellbuiltTypesElements ∩ cii = ∅ ∧ ii ⊆ WidgetsInstances ⇒ consARINC661Ontology(ii, cii, ipvs) = consOntology(...)
isWDRadioBoxDef :∀o · o ∈ Ontology(ARINC661Classes, ARINC66Properties, ARINC661Instances)

⇒ (isWDRadioBox(o)⇔ (∀...)
isWDARINC661OntologyDef : ∀o · o ∈ Ontology(ARINC661Classes, ARINC66Properties, ARINC661Instances)

⇒ (isWDOntology(o) ∧ isWDRadioBox(o) ∧ isWDEditBoxNumeric(o)⇒ isWDARINC661Ontology(o))
CheckOfSubsetA661OntologyInstancesDef :∀o, ipvs·

o ∈ Ontology(ARINC661Classes, ARINC66Properties, ARINC661Instances) ∧
ipvs ∈ P(ARINC661Instances × ARINC66Properties × ARINC661Instances)

⇒ (isWDARINC661Ontology(consOntology(...))⇒ CkeckOfSubsetA661OntologyInstances(...))
. . .

THEOREMS
. . . .
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State-based properties

Case study - Weather Radar System

WXR Case study
The pilot interacts with this application (Mode selection, angle selection, etc.).

- Widgets ⇒ formalised
as instances

- Action on the widgets
⇒ theory operators

- Properties of the
application ⇒ Proved
as theorems

- Requirements for the
WXR

- The selection of
the check button
must be exclusive

- The tilt angle
must be within a
specific range

- . . . Figure: Dassault Falcon 6X cockpit
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State-based properties

An extract of the Event-B model

State variable
The ui user interface is a typed by ontology concepts

MACHINE WXRModel
VARIABLES ui
INVARIANTS
i n v 1 : ui ∈ P(ARINC661Instances × ARINC66Properties × ARINC661Instances)
i n v 2 : ∃uiArg · ((ui = initiator(A661WXROntology)) ∨

∃m · isWDChangeModeSelection(A661WXROntology, uiArg,m) ∧
ui = changeModeSelection(A661WXROntology, uiArg,m)) ∨

(∃v · isWDChangeTitlAngle(A661WXROntology, uiArg, v) ∧
ui = changeTitlAngle(A661WXROntology, uiArg, v)) ∨ . . .

thm1 : isVariableOfARINC661Ontology(A661WXROntology, ui)
thm2 : (∀rb, b1, b2 · rb ∈ RadioBoxInstances ∧ b1 ∈ CheckButtonInstances ∧ b2 ∈ CheckButtonInstances ∧

rb 7→ hasChildrenForRadioBox 7→ b1 ∈ ui ∧ rb 7→ hasChildrenForRadioBox 7→ b2 ∈ ui
⇒ (b1 7→ hasCheckButtonState 7→ SELECTED ∈ ui ∧ b2 7→ hasCheckButtonState 7→ SELECTED ∈ ui

⇒ b1 = b2)) ∧
(∀rb, b1, b2 · rb ∈ RadioBoxInstances ∧ b1 ∈ ToggleButtonInstances ∧ b2 ∈ ToggleButtonInstances ∧
rb 7→ hasChildrenForRadioBox 7→ b1 ∈ ui ∧ rb 7→ hasChildrenForRadioBox 7→ b2 ∈ ui
⇒ (b1 7→ hasToggleButtonState 7→ SELECTED ∈ ui ∧ b2 7→ hasToggleButtonState 7→ SELECTED ∈ ui

⇒ b1 = b2)) ∧
(∀ed, v · ed 7→ hasValue 7→ v ∈ ui ⇒ v ∈ A661 EDIT BOX NUMERIC ADMISSIBLE VALUES)

- inv1 and inv2 checks that state variable ui is manipulated by two operators of the
Theory

- thm1 and thm2 guarantee the exclusive property for button selection
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State-based properties

An extract of the Event-B model (Cont.)

Changing selection mode and anngle

Modes and Angles are modified using operators of the theory

EVENTS
INITIALISATION
THEN

act1 : ui := initiator(A661WXROntology)
END
changeModeSelection
ANY mode
WHERE

grd1 : mode ∈ WXRcheckButtons
grd2 : isWDChangeModeSelection(A661WXROntology, ui,mode)

THEN
act1 : ui := changeModeSelection(A661WXROntology, ui,mode)

END
changeTitlAngle
ANY newAngle
WHERE

grd1 : newAngle ∈ A661 EDIT BOX NUMERIC VALUES
grd2 : newAngle ∈ A661 EDIT BOX NUMERIC ADMISSIBLE VALUES
grd3 : isWDChangeTitlAngle(A661WXROntology, ui, newAngle)

THEN
act1 : ui := changeTitlAngle(A661WXROntology, ui, newAngle)

END
. . .

END
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Event-Based (behvioural) properties

Annotating Events

How to handle domain knowledge related to events ?
Still in the context of Interactive Critical Systems, let us consider a requirement of the form

Any Input event must be followed by a confirmation/abortion event

- Input and confirmation/abortion may correspond to various events in an interactive
system (using keyboard, voice, finger designation, box, timeout, etc.

- must be followed relates to a temporal logic property

According to our view, this property is domain knowledge oriented (standard, regulation,
etc.)

Can we manage this this kind of properties ?

- Formal methods are not equipped with the capability to express such properties

- Classical solution =⇒ Use of ad’hoc modelling by hard encoding the property in the
model
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Event-Based (behvioural) properties

Annotating Events

Our approach

- Define an ontology of Events (in an Event-B theory)

- Use the Meta-Theory of Event-B namely EB4EB allowing to manipulate states and Events
(Another Event-B theory)

- Events are annotated using a relation of the form EVENTS ←→ EVT TAGS

Use the predicate operator isNecFollowedBy modelling this property

Can we manage this this kind of properties ?

- Formal methods are not equipped with the capability to express such properties

- Classical solution =⇒ Use of ad’hoc modelling by hard encoding the property in the
model
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Event-Based (behvioural) properties

Annotating Events

Composition of different algebraic theories

- A case where the modelling language does not offer built-in operators to express specific
properties.

THEORY DomainDynamicPropertiesTheory
IMPORT THEORY OntologiesTheory , EventBTheory ,
TYPE PARAMETERS Tg, Prop , St, Ev
OPERATORS

. . .
isNecFollowedByWD p r e d i c a t e ( . . . )
isNecFollowedBy p r e d i c a t e

(m : Mach(St, Ev),
eo : Ontology(Tg, Prop, Ev) ,
StartTag : Tg ,
IntermediateTags : Pow(Tg)
EndTag : Tg
v : Pow(Ev × Pow(St × NAT )) )

w e l l−d e f i n e d n e s s isNecFollowedByWD (...)

d i r e c t d e f i n i t i o n
∀EvtInst.EvtInst ∈ classInstances(eo, startTag) =⇒

IsReachable(
m ,
EvtInst ,
classInstances(eo, endTag) ,
classInstances(eo, intermediateTags) ,
v(EvtInst) )

END

Proofs

- An ontology of tagged events

– A meta-theory to manipu-
late Event-B models i.e state-
transitions systems

- Definition of a specific tem-
poral logic operator compos-
ing events and tags
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Conclusion

Event-B + Theories

- A framework integrating both

- Event-B machines for system models i.e. prescriptive models
- Algebraic data type theories for domain knowledge i.e. sharable descriptive models
- Data types and operators annotate states/transitions (events) i.e model annotation

- Well-Definedness (WD) conditions are useful to guarantee correct by construction use of
operators

- Outsourcing: complex proofs at the theory level, once and for all

- Reuse of theorems in formal Event-B models and reduction of proof efforts for engineers

Our experiments
Many theories for domain knowledge have been developed following the presented approach

- Differential equations for Hybrid systems, braking systems for trains

- Interactive systems: Arinc 661, widgets

- Tanks, Logistics, Units

- Autonomous vehicles (collaborative work with NII)

Other are under development with RATP

- Trains and railway systems

- Environment models
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Conclusion

Conformance/Compliance: towards a Conformance/Compliance by
construction

- Standards could be formalised as algebraic theories

- Independent of any system
- Stateless sharable theories

- Two approaches are identified

- A priori =⇒ system models are designed based on formalised standards
- A posteriori =⇒ system models are aligned with standards (annotation uses gluing

mappings)

- The design of standards as theories is not free and requires trained humans resources !!!!

To Do

- More formalised domain theories

- Consistence of defined theories. Are they inhabited ?

- Build bridges for Event-B Theories with other formal modelling approaches and proof
assistants

- An engineering process: what is the level of granularity for axiomatic theories ? How to
manage the complexity of the developments ? ....

- . . .
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Thank You

yamine@n7.fr
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