
Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Correct By Construction Standard Compliance/Conformance 1

Yamine Äıt Ameur∗, ∗∗

∗ IRIT, INPT-ENSEEIHT - CNRS, University of Toulouse, France

22nd Software Certification Consortium
SCC’2024

May 9-10, 2024
Annapolis, Maryland, USA

1Joint work with G. Dupont, I. Mendil, D. Méry, M. Pantel P. Rivière and N. Singh
This work is supported by ANR (Agence Nationale de la Recherche) grant ANR-19-CE25-0010-01

1 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Outline

1 Introduction

2 Algebraic Theories. Case of Event-B

3 The generic framework

4 Experiments for Interactive critical systems (ICS)

5 Conclusion

2 / 38

1 Introduction

2 Algebraic Theories. Case of Event-B

3 The generic framework

4 Experiments for Interactive critical systems (ICS)

5 Conclusion

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

To start ...

Is this a cube or a Polygon ?

- Compute the Volume of this cube =⇒ Need of 3-D geometry

- Compute the Surface or Volume of this polygon =⇒ Need of 2-D geometry, but
Volume has no meaning

- However, Surface and Volume of the cube are computable using 2-D geometry

3 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Context

System models

- Different approaches used to model systems

- stateful e.g. state-transition systems
- stateless e.g synchronous languages

- Prescriptive models

Modelling languages

- Supported by different modelling languages

- Main objective =⇒ reason on system models to establish properties reflecting the mod-
elled requirements.

4 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Context

How rich is a modelling language from different perspectives ?

- expressivity

- semantics

- verification and validation capabilities

- · · ·
How modelling languages can be enriched ?

- Ad’hoc modelling languages, DSLs

- extension

- transformation

- composition

- · · ·
Encountered problems
Modelling requires to handle

- heterogenity

- domain knowledge and application domain

- standards and regulations

- · · ·
5 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Context

State based formal methods
Capability of formal state-based methods

- to model complex systems

- reason about them to establish properties reflecting the modelled requirements.

In particular,

- ensuring system safety through the verification of invariant properties

- each reachable state of the modelled system fulfills these invariants, i.e. the system state
is always in a safe region and never leaves it

- verification is based on an induction principle over traces of transition systems

Figure: State-transition systems

6 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Context

State based formal methods

State variables are modified by actions
relying on

- the generalised assignment operation
based on the “becomes such that” BAP

- noted St : | BAP(St, St′)

- defining a state transition

- ASM rules, substitutions or events in B
and Event-B, Hoare triples, Guarded
Commands (GCL), operations in RSL
and VDM , actions in TLA+, schemas in
Z, . . . Figure: State-transition systems - Trace-based

semantics

7 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Context

Domain knowledge
Modelling of complex systems in system engineering relies on domain knowledge

- shared and reused in system models

- definitions as well as domain-specific properties.

- descriptive models

Two different types of Domains
- Once and for all formalised domains, stable and reusable

- mathematics: diff. eq., control theory, probabilities, etc.
- physics, flight dynamics, units, etc.
- more generally, external theories related to designed systems

- System dependent formalised domains

- describe system concepts
- ”instantiations”, ”specialisations” of above theories with additional specific con-

straints
- Examples: valves, tanks, wheels, etc.

Standards, regulations, ontologies, ...
- defined independently of any specific system model

- designed asynchronously 8 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Context

Domain knowledge

Modelling of complex systems in system
engineering relies on domain knowledge

- formalised as algebraic theories with
data types, operators, axioms

- Operators record allowed
transformations

- and theorems proved independently of
the designed system models.

Partial definitions play a key role

This idea is not new !
Figure: Algebraic data-types definitions

9 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Model Annotation

Composing system models and domain knowledge - Model Annotation
How ?

- By borrowing domain specific theories in system design formal models. It brings

- partial operators associated to well-definedness conditions
- Hypotheses, Theorems and proof rules

- By annotating models with references to domain knowledge models

Transitions are seen as partially defined operations

Figure: States and transitions linked to types and operators 10 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

The case of state-based formal methods with Event-B

Main features
Support for

- expressive data-types

- partially defined operators

- Well-definedness (WD) conditions

- Automatic proof obligation generation

The proposed framework

- Event-B can be extended to handle domain theories using its Theory component

- Transfer and Reuse, in the system design models, the proofs achieved on the theory side

- Keep using the Event-B invariant preservation mechanism while referring to externally
defined data-types

11 / 38

1 Introduction

2 Algebraic Theories. Case of Event-B
Event-B: Basics
Theories: definition
Well-Definedness (WD)

3 The generic framework

4 Experiments for Interactive critical systems (ICS)

5 Conclusion

1 Introduction

2 Algebraic Theories. Case of Event-B
Event-B: Basics
Theories: definition
Well-Definedness (WD)

3 The generic framework

4 Experiments for Interactive critical systems (ICS)

5 Conclusion

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Event-B: Basics

Event-B Structure and Proofs

Event-B: Models and Machines

- a state based formal method with proof and refinement

Context Machine

CONTEXT Ctx MACHINE MA

SETS s SEES Ctx

CONSTANTS c VARIABLES xA

AXIOMS A INVARIANTS IA(xA)

THEOREMS Tctx THEOREMS Tmch(xA)

END VARIANT V (xA)

EVENTS

EVENT evtA

ANY αA

WHERE GA(xA, αA)
THEN

xA :| BAPA(

αA, xA, xA
′

)
END

. . .
END

- set theory, basic types (integers, booleans) and
their associated operators

- first order logic

- explicit state formalised as a set of state vari-
ables

- initialisation event and guarded events to
record state changes based on BAP (Before-
After Predicates)

- inductive reasoning on event traces

- invariant preservation and variant decreasing
for reachability

- Rodin open source IDE

12 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Event-B: Basics

Event-B Structure and Proofs

Event-B: Proof Obligations

- a state based formal method with proof and refinement

(1) Theorems (THMCtx) A ⇒ Tctx A

(2) (THMMch) IA(xA) ⇒ Tmch(xA)

(3) Initialisation (INIT) A ∧ GA(αA) ∧ BAPA(αA, xA′)
⇒ IA(xA′)

(4) Invariant A ∧ IA(xA) ∧ GA(xA, αA)

preservation (INV) ∧BAPA(xA, αA, xA′) ⇒ IA(xA′)
(5) Event A ∧ IA(xA) ∧ GA(xA, αA)

feasibility (FIS) ⇒ ∃xA′ · BAPA(xA, αA, xA′)
(6) Variant A ∧ IA(xA) ∧ GA(xA, αA)

progress (VAR) ∧BAPA(xA, αA, xA′)
⇒ V (xA′) < V (xA)

- Automatic generation of proof obliga-
tions.

- Rodin is equiped with automatic/in-
teractive provers, SMT solvers, Model
checkers, animators, etc.

Proof obligations

- A set of well-definedness POs are associated to Event-B constructs

13 / 38

1 Introduction

2 Algebraic Theories. Case of Event-B
Event-B: Basics
Theories: definition
Well-Definedness (WD)

3 The generic framework

4 Experiments for Interactive critical systems (ICS)

5 Conclusion

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Theories: definition

Event-B theories

Core Event-B is not equiped with

- rich data-types and associated operators

- in particular, there is no

- reals NOR continuous features
- capability to introduce new data types
- possibility to generate new proof obligations

Event-B theories as a support for Event-B extensions

- introduced in 2010’s by JR. Abrial, M. Butler, I. Maamria, . . .

- support for defining new data types

- constructive or axiomatic

- tool supported as a PlugIn of the Rodin platform

14 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Theories: definition

Event-B theories

THEORY Th IMPORT Th1, ...

TYPE PARAMETERS E ,F , ...

DATATYPES
T1(E , ...)≡ cstr1(p1:T1, ...)|...

OPERATORS
Op1 nature (p1: T1, ...)

well−definedness
WD(p1, ...)

direct definition
Expr1
. . .

AXIOMATIC DEFINITIONS
OPERATORS

AOp2 nature (p1: T1, ...): Tr
well−definednessWD(p1, ...)

WD(p1, ...)
. . .

AXIOMS
Ax1, ...

THEOREMS
Th1, ...

END

- Algebraic Theories as extensions for Event-B basic
language

- Data types, operators with WD conditions

- Constructive definitions and axiomatic definitions

- Relevant Theorems

- proof rules: Inference and rewrite rules

- Theory Plug-in development environment and associated
proof environement

- Proof rules can be included in the Rodin proof tactics

- Library for mathematical and domain-specific theories
(i.e., Reals, differential equations etc.)

15 / 38

1 Introduction

2 Algebraic Theories. Case of Event-B
Event-B: Basics
Theories: definition
Well-Definedness (WD)

3 The generic framework

4 Experiments for Interactive critical systems (ICS)

5 Conclusion

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Well-Definedness (WD)

Well-Definedness (WD)

Event-B: Well-definedness Proof obligations
According to J.R. Abrial, Well-Definedness describes the

circumstances under which it is possible to introduce new term symbols by means of conditional
definitions in a formal theory as if the definitions in question were unconditional, . . . It avoids
describing ill-defined operators, formulas, axioms, theorems, and invariants.

- Avoidance of ill-defined operators, formulas, axioms, theorems, and invariants.

- Each formula is associated to well-definedness POs that ensure that the formula is
well-defined and that two-valued logic can be used (M. Leuschell - IFM’2020).

- An inductively defined WD predicate WD(f) is associated with each formula f

- Example. Let a and b be two integers, f ∈ D 7→ R, then

• WD(a÷ b) ≡WD(a) ∧WD(b) ∧ b 6= 0

• WD(f (a)) ≡WD(a) ∧ f ∈ D 7→ R ∧ a ∈ dom(f)

16 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Well-Definedness (WD)

Well-Definedness (WD)

Event-B Theories: Well-definedness Proof obligations

- Each defined operator is associated to a (WD) condition ensuring its correct definition.

- When it is applied (in the theory or in an Event-B machine or context), this WD
condition generates a PO requiring to establish that this condition holds

- The theory designer defines these WD conditions for the partially defined operators.

- They are then added to the native Event-B WD POs

- Once the WD POs are proved, they are added as hypotheses in the proofs of the other
POs

New proof obligations

• Use of the WD mechanism

• When an operator is defined/applied, its WD PO is automatically generated

17 / 38

1 Introduction

2 Algebraic Theories. Case of Event-B

3 The generic framework

4 Experiments for Interactive critical systems (ICS)

5 Conclusion

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Principle

State changes and Invariants

- State change (transition) is viewed as a partial function

Trans : State 7→ P(State) or Trans : State 7→ State

- An invariant restricts state changes to safe states

- A well-defined partial function, on the set of safe states SafeSt as

Trans Inv : SafeSt 7→ P(State)

- To preserve the invariant, one has to establish that:

ran(Trans Inv) ⊆ P(SafeSt)

.

An alternative approach to prove invariants of Event-B system models

- A data type T for State + operators ⇒ well-defined partial functions

- Each operator Op(x1 : T1, x2 : T2, . . . , xn : Tn) of type T is associated to a
WD(x1, x2, . . . , xn) stating that x1, x2, . . . , xn ∈ dom(Op)

- Safe state changes are defined according to a given property independently of any model

18 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Principle

Step 1. Definition of an algebraic data-type
Formalise domain knowledge

- a data-type corresponding to the type of a state variable

- a set of operators associated to well-Defined (WD) conditions

- relevant theorems guaranteeing properties of the data-type

- =⇒ The theorems are proved once and for all.

Step 2. Formalise a system model
Annotate states and transitions of system models

- State variables are typed using the defined data-type =⇒ State variables annotation

- In Events, state variables are manipulated using the operators associated to the data-type
=⇒ Events and transitions annotation

- WD POs associated to the operators are automatically generated

- Theorems of the theory hold at the machine level (for free)

19 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

A generic algebraic theory for the manipulated type

An algebraic theory for (parameterised) data-type T

- A set of operators manipulating data-type T (ArgsType) elements

- Specific properties associated to the data-type defined as a predicate

THEORY Theo
TYPE PARAMETERS ArgsTypes
DATATYPES

T(ArgsTypes) ≡ Cons(args : ArgsTypes) | . . .
OPERATORS

. . .
Opi p r e d i c a t e (el : T (ArgsType), args : ArgsTypes)

w e l l−d e f i n e d n e s s c o n d i t i o n WD Opi(args)
d i r e c t d e f i n i t i o n Op Expi (el, args)

. . .
WD Opi p r e d i c a t e (args : ArgsTypes)

d i r e c t d e f i n i t i o n WD Op Expn(el, args)
. . .

P r o p e r t i e s p r e d i c a t e (el : T (ArgsTypes))
d i r e c t d e f i n i t i o n properties Exp(el)

. . .
THEOREMS

ThmTheoOp1 :
∀x, args · x ∈ T (ArgsTypes) ∧ args ∈ ArgsTypes∧

WD Op1(args) ∧ Op1(x, args) ⇒ Properties(x)
. . .

ThmTheoOpn :
∀x, args · x ∈ T (ArgsTypes) ∧ args ∈ ArgsTypes∧

WD Opn(args) ∧ Opn(x, args) ⇒ Properties(x)

Theorems

- guarantee that an operation
does not move to a situa-
tion that does not satsify the
Properties predicate

Proofs

- Theorems must be proved for
all the operators that preserve
the properties

- Proofs are made using the
provers offered by the frame-
work (may be external ones)

20 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

An instantiation context of the generic theory

An Event-B context with

- A data-type T (s)

- Instantiated theorems

CONTEXT Ctx
SETS s
CONSTANTS c
AXIOMS . . .
THEOREMS

ThmTheoOp1Inst : ∀x, args · x ∈ T (s) ∧ args ∈ s∧
WD Op1(args) ∧ Op1(x, args) ⇒ Properties(x)

. . .
ThmTheoOpnInst : ∀x, args · x ∈ T (s) ∧ args ∈ s∧

WD Opn(args) ∧ Opn(x, args) ⇒ Properties(x)

Proofs

- Theorems are trivially proved (type
checking)

21 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

An Event-B model manipulating data-type elements

An Event-B Machine with

- a state variable x of type T (s) and specific invariants

- a typing invariant
- by AllowedOper , only defined operators manipulate state x provided their WD hold

MACHINE Machine SEES Ctx
VARIABLES x

INVARIANTS
TypingInv : x ∈ T (s)
AllowedOper : ∃∃args · args ∈ s ∧ (WD Op1(args) ∧ Op1(x, args)) ∨ . . . ∨ (WD Opn(args) ∧ Opn(x, args))

THEOREMS
SafThm : Properties(x)

EVENTS
Evt1 =̂ . . . Evtn =̂

ANY α ANY α
WHEN WHEN

grd1 : α ∈ s ∧WD Op1(α) grd1 : α ∈ s ∧WD Opn(α)
THEN THEN

act1 : x :| Op1(x′, α) act1 : x :| Opn(x′, α)
END END

END

- The SafThm theorem states that the properties Properties hold
- Its proof is straightforward: use of the instantiated theorems ThmTheoOpi Inst

(context) + the modus-ponens (⇒-elimination rule)
22 / 38

1 Introduction

2 Algebraic Theories. Case of Event-B

3 The generic framework

4 Experiments for Interactive critical systems (ICS)
State-based properties
Event-Based (behvioural) properties

5 Conclusion

1 Introduction

2 Algebraic Theories. Case of Event-B

3 The generic framework

4 Experiments for Interactive critical systems (ICS)
State-based properties
Event-Based (behvioural) properties

5 Conclusion

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

State-based properties

Domain models as ontologies

Design of Critical Interactive Systems

- Descriptive standards with rules and regulations for CIS

- Designers must conform to the standards

- ARINC2 661 standard describes Cockpit Display System (CDS) standard for communi-
cation protocols between interface objects and aircraft systems

- Widespread use in the industry ⇒ i.e., Airbus A380 and Boeing B787.
- 800 pages of definitions and requirements for the CDS and its graphical objects
- In Our work ⇒ we focus on the widget aspects (chapter 3.0).

Several developed case studies: Weather Radar System (WXR), Traffic Collision Avoid-
ance System (TCAS), ...

Modelling ARINC661 as an ontology

- Need to define ontologies in Event-B

⇒ Define an Event-B Theory

- CIS components

- are instances of the ontology
- manipulated by Event-B models

2Aeronautical Radio, Incorporated
23 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

State-based properties

Ontologies as Event-B theories

Ontologies Modelling Language (OML) - DATATYPE

THEORY OntologiesTheory
TYPE PARAMETERS

C ,
P ,
I

DATATYPES
Ontology(C , P, I) ≡
consOntology(

classes : P(C) ,
properties : P(P) ,
instances : P(I) ,
classProperties : P(C × P) ,
classInstances : P(C × I) ,
classAssociations : P(C × P × C) ,
instanceAssociations : P(I × P × I)

)

OPERATORS
. . .
END

- Ontology(C, P, I) : a generic data type
for classes, properties, instances.

- Specifying class properties, class
associations and classe intances

- Constrained instantiation:
instancePropertyValues &
isWDInstancePropertyValues.

- 37 operators

24 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

State-based properties

Ontologies as Event-B theories

Ontologies Modelling Language (OML) - Operators

THEORY OntologiesTheory
. . .
OPERATORS

isWDInstancesAssociations p r e d i c a t e (o : Ontology(C , P, I))
w e l l−d e f i n e d n e s s isWDClassProperites(o) ∧ isWDClassInstances(o) ∧ isWDClassAssociations(o)
d i r e c t d e f i n i t i o n

instanceAssociations(o) ⊆ instances(o)× properties(o)× instances(o) ∧
instanceAssociations(o) ⊆ {i1 7→ p 7→ i2 | i1 ∈ I ∧ p ∈ P ∧ i2 ∈ I ∧

i1 7→ p 7→ i2 ∈ instances(o)× properties(o)× instances(o) ∧
(∃c1, c2 · c1 ∈ C ∧ c2 ∈ C ∧ {c1, c2} ⊆ getClasses(o)

⇒ (c1 7→ p 7→ c2 ∈ getClassAssociations(o) ∧ p ∈ getClassProperties(o)[{c1}] ∧
i1 ∈ getClassInstances(o)[{c1}] ∧ i2 ∈ getClassInstances(o)[{c2}]))}

getInstanceAssociations e x p r e s s i o n (o : Ontology(C , P, I))
w e l l−d e f i n e d n e s s isWDInstancesAssociations(o)
d i r e c t d e f i n i t i o n instanceAssociations(o)

isWDOntology p r e d i c a t e (o : Ontology(C , P, I))
d i r e c t d e f i n i t i o n

isWDClassProperties(o) ∧ isWDClassInstances(o) ∧
isWDClassAssociations(o) ∧ isWDInstancesAssociations(o)

CheckOfSubsetOntologyInstances p r e d i c a t e (o : Ontology(C , P, I), ipvs : P(I × P × I))
w e l l−d e f i n e d n e s s isWDOntology(o)
d i r e c t d e f i n i t i o n

ipvs ⊆ {i1 7→ p 7→ i2 | i1 ∈ I ∧ p ∈ P ∧ i2 ∈ I ∧ i1 7→ p 7→ i2 ∈ instances(o)× properties(o)×
instances(o) ∧ . . .}

isA p r e d i c a t e (o : Ontology(C , P, I), c1 : C , c2 : C) · · ·
. . .

THEOREMS
. . .

END
25 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

State-based properties

Ontologies as Event-B theories

Ontologies Modelling Language (OML) - Theorems
Useful theorems are proved.

THEORY OntologiesTheory
TYPE PARAMETERS

C ,
P ,
I

DATATYPES
Ontology(C , P, I)
. . .

OPERATORS
. . .

THEOREMS
thm1 : ∀o, c1, c2, c3 · o ∈ Ontology(C , P, I) ∧ isWDOntology(o) ∧ c1 ∈ C ∧ c2 ∈ C ∧ c3 ∈ C∧

ontologyContainsClasses(o, {c1, c2, c3})
⇒ (isA(o, c1, c2) ∧ isA(o, c2, c3)⇒ isA(o, c1, c3))

END

26 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

State-based properties

The ARINC 661 standard as an ontology

Formal Definition of ARINC 661: Instantiation of the Theory of ontologies

- ARINC661Theory definition =⇒ Axiomatic definition of the operators

- Classes, properties and instances for ARNINC 661 are introduced

- 54 operators and 17 axioms were needed for chapter 3 of the ARINC 661 standard

THEORY ARINC661Theory
IMPORT THEORY PROJECTS OntologiesTheory
AXIOMATIC DEFINITIONS ARINC661Axiomat i sat ion :
TYPES ARINC661Classes , ARINC66Propert ies , ARINC661Instances
OPERATORS
ARINC661 BOOL e x p r e s s i o n () : ARINC661Classes
A661 TRUE e x p r e s s i o n () : ARINC661Instances
A661 FALSE e x p r e s s i o n () : ARINC661Instances
A661 EDIT BOX NUMERIC ADMISSIBLE VALUES e x p r e s s i o n () : P(ARINC661Instances)
CheckButtonState e x p r e s s i o n () : ARINC661Classes
Label e x p r e s s i o n () : ARINC661Classes
RadioBox e x p r e s s i o n () : ARINC661Classes
CheckButton e x p r e s s i o n () : ARINC661Classes
hasChildrenForRadioBox e x p r e s s i o n () : ARINC66Properties
hasCheckButtonState e x p r e s s i o n () : ARINC66Properties
SELECTED e x p r e s s i o n () : ARINC661Instances
UNSELECTED e x p r e s s i o n () : ARINC661Instances
isWDRadioBox p r e d i c a t e (o : Ontology(ARINC661Classes, ARINC66Properties, ARINC661Instances))

w e l l−d e f i n e d n e s s isWDOntology(o)
isWDARINC661Ontology p r e d i c a t e (o : Ontology(ARINC661Classes, ARINC66Properties, ARINC661Instances))
. . .

27 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

State-based properties

The ARINC 661 standard as an ontology (Cont.)

Formal Definition of ARINC 661: Instantiation of the Theory of ontologies

AXIOMS
ARINC661ClassesDef :

partition(ARINC661Classes, {Label}, {RadioBox}, {CheckButton}, {CheckButtonState}, . . .)
ARINC66PropertiesDef : partition(ARINC66Properties, {hasLabelStringForLabel},

{hasChildrenForRadioBox}, {hasCheckButtonState}, {hasLabelForCheckButton}, ...)
ARINC661InstancesDef : partition(ARINC661Instances, {A661 TRUE}, {A661 FALSE}, {SELECTED},

{UNSELECTED}, LabelInstances, RadioBoxInstances, CheckButtonInstances, ...)
consARINC661OntologyDef : ∀ii, cii, ipvs · ii ∈ P(ARINC661Instances) ∧

cii ∈ P(ARINC661Classes × ARINC661Instances) ∧
ipvs ∈ P(ARINC661Instances × ARINC66Properties × ARINC661Instances) ∧

wellbuiltTypesElements ∩ cii = ∅ ∧ ii ⊆ WidgetsInstances ⇒ consARINC661Ontology(ii, cii, ipvs) = consOntology(...)
isWDRadioBoxDef :∀o · o ∈ Ontology(ARINC661Classes, ARINC66Properties, ARINC661Instances)

⇒ (isWDRadioBox(o)⇔ (∀...)
isWDARINC661OntologyDef : ∀o · o ∈ Ontology(ARINC661Classes, ARINC66Properties, ARINC661Instances)

⇒ (isWDOntology(o) ∧ isWDRadioBox(o) ∧ isWDEditBoxNumeric(o)⇒ isWDARINC661Ontology(o))
CheckOfSubsetA661OntologyInstancesDef :∀o, ipvs·

o ∈ Ontology(ARINC661Classes, ARINC66Properties, ARINC661Instances) ∧
ipvs ∈ P(ARINC661Instances × ARINC66Properties × ARINC661Instances)

⇒ (isWDARINC661Ontology(consOntology(...))⇒ CkeckOfSubsetA661OntologyInstances(...))
. . .

THEOREMS
. . . .

28 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

State-based properties

Case study - Weather Radar System

WXR Case study
The pilot interacts with this application (Mode selection, angle selection, etc.).

- Widgets ⇒ formalised
as instances

- Action on the widgets
⇒ theory operators

- Properties of the
application ⇒ Proved
as theorems

- Requirements for the
WXR

- The selection of
the check button
must be exclusive

- The tilt angle
must be within a
specific range

- . . . Figure: Dassault Falcon 6X cockpit

29 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

State-based properties

An extract of the Event-B model

State variable
The ui user interface is a typed by ontology concepts

MACHINE WXRModel
VARIABLES ui
INVARIANTS
i n v 1 : ui ∈ P(ARINC661Instances × ARINC66Properties × ARINC661Instances)
i n v 2 : ∃uiArg · ((ui = initiator(A661WXROntology)) ∨

∃m · isWDChangeModeSelection(A661WXROntology, uiArg,m) ∧
ui = changeModeSelection(A661WXROntology, uiArg,m)) ∨

(∃v · isWDChangeTitlAngle(A661WXROntology, uiArg, v) ∧
ui = changeTitlAngle(A661WXROntology, uiArg, v)) ∨ . . .

thm1 : isVariableOfARINC661Ontology(A661WXROntology, ui)
thm2 : (∀rb, b1, b2 · rb ∈ RadioBoxInstances ∧ b1 ∈ CheckButtonInstances ∧ b2 ∈ CheckButtonInstances ∧

rb 7→ hasChildrenForRadioBox 7→ b1 ∈ ui ∧ rb 7→ hasChildrenForRadioBox 7→ b2 ∈ ui
⇒ (b1 7→ hasCheckButtonState 7→ SELECTED ∈ ui ∧ b2 7→ hasCheckButtonState 7→ SELECTED ∈ ui

⇒ b1 = b2)) ∧
(∀rb, b1, b2 · rb ∈ RadioBoxInstances ∧ b1 ∈ ToggleButtonInstances ∧ b2 ∈ ToggleButtonInstances ∧
rb 7→ hasChildrenForRadioBox 7→ b1 ∈ ui ∧ rb 7→ hasChildrenForRadioBox 7→ b2 ∈ ui
⇒ (b1 7→ hasToggleButtonState 7→ SELECTED ∈ ui ∧ b2 7→ hasToggleButtonState 7→ SELECTED ∈ ui

⇒ b1 = b2)) ∧
(∀ed, v · ed 7→ hasValue 7→ v ∈ ui ⇒ v ∈ A661 EDIT BOX NUMERIC ADMISSIBLE VALUES)

- inv1 and inv2 checks that state variable ui is manipulated by two operators of the
Theory

- thm1 and thm2 guarantee the exclusive property for button selection

30 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

State-based properties

An extract of the Event-B model (Cont.)

Changing selection mode and anngle

Modes and Angles are modified using operators of the theory

EVENTS
INITIALISATION
THEN

act1 : ui := initiator(A661WXROntology)
END
changeModeSelection
ANY mode
WHERE

grd1 : mode ∈ WXRcheckButtons
grd2 : isWDChangeModeSelection(A661WXROntology, ui,mode)

THEN
act1 : ui := changeModeSelection(A661WXROntology, ui,mode)

END
changeTitlAngle
ANY newAngle
WHERE

grd1 : newAngle ∈ A661 EDIT BOX NUMERIC VALUES
grd2 : newAngle ∈ A661 EDIT BOX NUMERIC ADMISSIBLE VALUES
grd3 : isWDChangeTitlAngle(A661WXROntology, ui, newAngle)

THEN
act1 : ui := changeTitlAngle(A661WXROntology, ui, newAngle)

END
. . .

END

31 / 38

1 Introduction

2 Algebraic Theories. Case of Event-B

3 The generic framework

4 Experiments for Interactive critical systems (ICS)
State-based properties
Event-Based (behvioural) properties

5 Conclusion

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Event-Based (behvioural) properties

Annotating Events

How to handle domain knowledge related to events ?
Still in the context of Interactive Critical Systems, let us consider a requirement of the form

Any Input event must be followed by a confirmation/abortion event

- Input and confirmation/abortion may correspond to various events in an interactive
system (using keyboard, voice, finger designation, box, timeout, etc.

- must be followed relates to a temporal logic property

According to our view, this property is domain knowledge oriented (standard, regulation,
etc.)

Can we manage this this kind of properties ?

- Formal methods are not equipped with the capability to express such properties

- Classical solution =⇒ Use of ad’hoc modelling by hard encoding the property in the
model

32 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Event-Based (behvioural) properties

Annotating Events

Our approach

- Define an ontology of Events (in an Event-B theory)

- Use the Meta-Theory of Event-B namely EB4EB allowing to manipulate states and Events
(Another Event-B theory)

- Events are annotated using a relation of the form EVENTS ←→ EVT TAGS

Use the predicate operator isNecFollowedBy modelling this property

Can we manage this this kind of properties ?

- Formal methods are not equipped with the capability to express such properties

- Classical solution =⇒ Use of ad’hoc modelling by hard encoding the property in the
model

33 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Event-Based (behvioural) properties

Annotating Events

Composition of different algebraic theories

- A case where the modelling language does not offer built-in operators to express specific
properties.

THEORY DomainDynamicPropertiesTheory
IMPORT THEORY OntologiesTheory , EventBTheory ,
TYPE PARAMETERS Tg, Prop , St, Ev
OPERATORS

. . .
isNecFollowedByWD p r e d i c a t e (. . .)
isNecFollowedBy p r e d i c a t e

(m : Mach(St, Ev),
eo : Ontology(Tg, Prop, Ev) ,
StartTag : Tg ,
IntermediateTags : Pow(Tg)
EndTag : Tg
v : Pow(Ev × Pow(St × NAT)))

w e l l−d e f i n e d n e s s isNecFollowedByWD (...)

d i r e c t d e f i n i t i o n
∀EvtInst.EvtInst ∈ classInstances(eo, startTag) =⇒

IsReachable(
m ,
EvtInst ,
classInstances(eo, endTag) ,
classInstances(eo, intermediateTags) ,
v(EvtInst))

END

Proofs

- An ontology of tagged events

– A meta-theory to manipu-
late Event-B models i.e state-
transitions systems

- Definition of a specific tem-
poral logic operator compos-
ing events and tags

34 / 38

1 Introduction

2 Algebraic Theories. Case of Event-B

3 The generic framework

4 Experiments for Interactive critical systems (ICS)

5 Conclusion

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Conclusion

Event-B + Theories

- A framework integrating both

- Event-B machines for system models i.e. prescriptive models
- Algebraic data type theories for domain knowledge i.e. sharable descriptive models
- Data types and operators annotate states/transitions (events) i.e model annotation

- Well-Definedness (WD) conditions are useful to guarantee correct by construction use of
operators

- Outsourcing: complex proofs at the theory level, once and for all

- Reuse of theorems in formal Event-B models and reduction of proof efforts for engineers

Our experiments
Many theories for domain knowledge have been developed following the presented approach

- Differential equations for Hybrid systems, braking systems for trains

- Interactive systems: Arinc 661, widgets

- Tanks, Logistics, Units

- Autonomous vehicles (collaborative work with NII)

Other are under development with RATP

- Trains and railway systems

- Environment models
35 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Conclusion

Conformance/Compliance: towards a Conformance/Compliance by
construction

- Standards could be formalised as algebraic theories

- Independent of any system
- Stateless sharable theories

- Two approaches are identified

- A priori =⇒ system models are designed based on formalised standards
- A posteriori =⇒ system models are aligned with standards (annotation uses gluing

mappings)

- The design of standards as theories is not free and requires trained humans resources !!!!

To Do

- More formalised domain theories

- Consistence of defined theories. Are they inhabited ?

- Build bridges for Event-B Theories with other formal modelling approaches and proof
assistants

- An engineering process: what is the level of granularity for axiomatic theories ? How to
manage the complexity of the developments ?

- . . .
36 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

Thank You

yamine@n7.fr

37 / 38

Introduction Algebraic Theories. Case of Event-B The generic framework Experiments for Interactive critical systems (ICS) Conclusion References

38 / 38

	Introduction
	Algebraic Theories. Case of Event-B
	Event-B: Basics
	Theories: definition
	Well-Definedness (WD)

	The generic framework
	Experiments for Interactive critical systems (ICS)
	State-based properties
	Event-Based (behvioural) properties

	Conclusion
	References

