Software Certification Consortium

22ND SOFTWARE CERTIFICATION CONSORTIUM MEETING

Co-located with High Confidence Software and Systems 2024 - Annapolis THEME: SAFE & SECURE REMOTE OPERATION OF SAFETY-CRITICAL SYSTEMS

Status and Challenges of Remote Operation of Motor Vehicles

Dr. Joseph D'Ambrosio, Dr. Ramesh S. General Motors R&D

> joseph.dambrosio@gm.com ramesh.s@gm.com

Overview

- Vehicle Remote Operation Enablers
- Relevant Automotive Trends
- Automotive Safety Standards
- Automotive Remote Operation Examples
- Summary

Remote Operation Enablers

- Secure connected vehicle
 - Cellular, Wifi, BTLE, or UWB
 - Cloud Services / Back Office
 - APIs providing access to:
 - Vehicle state information / diagnostics
 - Reprogramming
 - Sufficient QoS
- Electronically controlled actuators w/ control SW APIs
 - Steering
 - Braking
 - Propulsion / throttle
 - Transmission
 - Park brake
- Remote Interface Support
 - Monitoring devices
 - Vehicle state information
 - Situational awareness of external environment
 - Camera, GPS, ...
 - Remote input/ command devices
 - Automated (e.g., continuous deployment)
 - Driving command capture

Overview

- Vehicle Remote Operation Enablers
- Relevant Automotive Trends
 - SDV
 - Connected Vehicle
 - ADAS & AV
 - Connected ADAS & Autonomy
- Automotive Safety Standards
- Automotive Remote Operation Examples
- Summary

Software Define Vehicle

REF https://www.canalys.com/insights/automotive-industry-future

Connected Vehicles & Smart Cities

REF https://www.qualcomm.com/news/onq/2020/11/c-v2x-delivers-outstanding-performance-automotive-safety

REF: https://www.nexteer.com/blog/software-defined-vehicles-where-we-areand-where-were-heading/

ADAS and Automated Driving

SAE J3016[™] LEVELS OF DRIVING AUTOMATION

REF https://www.ansys.com/blog/linkingsafety-management-software-simplifies-adasautonomous-car-design

	SE LEVEL 0	S/E LEVEL 1	SÆ LEVEL 2	S/E LEVEL 3	SÆ LEVEL 4	SÆ LEVEL 5
What does the human in the driver's seat have to do?	You <u>are</u> driving whenever these driver support features are engaged – even if your feet are off the pedals and you are not steering			You <u>are not</u> driving when these automated driving features are engaged – even if you are seated in "the driver's seat"		
	You must constantly supervise these support features; you must steer, brake or accelerate as needed to maintain safety			When the feature requests, you must drive	These automated driving features will not require you to take over driving	
These are driver support features				These are automated driving features		
What do these features do?	These features are limited to providing warnings and momentary assistance	These features provide steering OR brake/ acceleration support to the driver	These features provide steering AND brake/ acceleration support to the driver	These features can drive the vehicle under limited conditions and will not operate unless all required conditions are met		This feature can drive the vehicle under all conditions
Example Features	 automatic emergency braking blind spot warning lane departure warning 	 lane centering OR adaptive cruise control 	 lane centering AND adaptive cruise control at the same time 	• traffic jam chauffeur	 local driverless taxi pedals/ steering wheel may or may not be installed 	• same as level 4, but feature can drive everywhere in all conditions

Connected Autonomy

- Goes beyond vehicle receiving an autonomous driving mission
- Examples:
 - External "data" directly influences ADAS or Autonomous Features
 - Feature capability partially resides off the vehicle
 - Autonomy as a service

Overview

- Vehicle Remote Operation Enablers
- Relevant Automotive Trends
- Automotive Safety Standards
 - ISO 26262
 - ISO TS 5083
 - ISO PAS 8800
 - Others
- Automotive Remote Operation Examples
- Summary

Safety Standards: ISO 26262 Road Vehicles – Functional Safety

- Functional Safety of EE Systems installed in production vehicles
 - Vehicle safety life cycle requirements
- Item what is being developed
- Item Context:
 - Item contained within single vehicle
 - Vehicle has full authority and full responsibility for the item's operation / function
- Not sufficient for remote operations safety

Safety Standards: ISO TS 5083

- Scope / Focus
 - Overarching standard linking others with a specialized focus
 - Adopts SAE J3016 Definitions
 - Primarily targeting SAE Levels 3 & 4
 - Risk acceptance criteria
 - Cybersecurity considerations
- Consideration of the following
 - Remote assistance
 - Modify goals / constraints,
 - Does not include "teleoperations"
- Concept of data safety
 - Data properties
 - Confidence in source provider
 - Refinement of confidence
 - Environment and command data

ISO/CD TS 5083

Road vehicles

Safety for automated driving systems Design, verification and validation

Status : Under development

CURRENT

REVISED 2021-04-30

Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles J3016_202104

Remote Updates for AI Based Systems Continuous Assurance

- ISO PAS 8800 is an emerging standard for AI based components and subsystems
- Remote Monitoring and Updates necessary elements in next gen ADS systems with the use of AI components
- Data Distribution Shift monitoring is an important aspect
- Any shift impacting the safety addressed with remote update of AI parameters
- Continuous assurance, an important requirement
- Data Collection for potential trigger conditions and edge cases in AI based systems

ISO/CD PAS 8800

Road Vehicles Safety and artificial intelligence

Status : Under development

Safety Standards: Others

- ISO 4272:2022
 - Definitions, Platooning Control System (PCS) Modes
 - Joining & leaving platoons
 - Longitudinal and lateral control
 - V2V & optional V2I messages

ISO 4272:2022

Intelligent transport systems Truck platooning systems (TPS) Functional and operational requirements

Status : Published

Emerging Safety Case Approach for ADS w/ External Elements

- For safe operation of ADS, several external elements may be relied upon for safe operation
 - Will be comprehended by ISO TS 5083
 - Examples: Remote assistance to ensure safety, centralized vehicle management, Map updates, Weather and road condition updates
- Safety requirements allocated to both ADS and External elements
- Safety case may make assumptions of external elements

Overview

- Vehicle Remote Operation Enablers
- Relevant Automotive Trends
- Automotive Safety Standards
- Automotive Remote Operation Examples
- Summary

Over the SW air updates

- Key aspects
 - Secure reprogramming
 - Confirmation of update process
 - Tracking of software versions
- How to validate update across vehicle variants?

Stolen Vehicle Assistance: Remote Slowdown

- Stolen Vehicle Slowdown Protocol
 - Owner reports vehicle stolen
 - Remote identification of vehicle location identified using connected vehicle GPS
 - Police locate vehicle
 - Remote engagement of vehicle flashers
 - Police confirm flashers on
 - Remote ramp down of vehicle speed to idle.

ADS Remote Assistance for Edge Cases

- Autonomous driving systems "phones a friend"
- Remote operator assesses situation
- ADS goals / task modifications
- Benefit of human in the loop for edge cases

REF https://nyc.streetsblog.org/2020/02/07/new-city-rule-tells-truckers-dont-even-think-of-double-parking-here

Human in the Loop Autonomy

- Proactive human remote control for challenging situations
- Benefits
 - Enhanced safety case vs. autonomous only control
 - Improved quality of life for drivers

Remote Driving: Fleet Operations

- Vehicle control
 - Drive by wire vehicles
 - Low speed operation
- Target operation areas
 - Parking lots and garages
 - Vehicle manufacturing plants
 - Loading / unloading for long haul transportation

BMW CES 2024 Remote Driving Demo

REF https://arstechnica.com/cars/2024/01/bmw-adds-a-human-touch-to-driverless-parking-at-ces-2024/2/

Vehicle Platooning

Cooperative Braking

- Leader / follower operation a vehicle convoy
- Technologies
 - By-wire driving
 - Connectivity
- Benefits:
 - Improved fuel economy
 - Reduce congestion
 - Safer operation of large vehicles
- Challenges:
 - Forming / dissolving platoon
 - Vary performance
 - Loss of communications
 - Non platoon vehicle cut ins
 - Handling emergency situations

REF https://pnorental.com/truck-platooning-the-future-of-road-transport/

DoD / US Army Unmanned Ground Vehicles

- UGV capability Classes:
 - Leader / Follower
 - Teleoperation
 - Platform autonomous operation
 - Network autonomous operation
- US Army Robotic Combat Vehicle (RCV)
 - Defense Innovation Unit teleoperation of unmanned vehicles
- Challenges
 - Potentially only passive sensing
 - Hazards obscured by vegetation, water, ...

https://breakingdefense.com/2023/06/army-closing-down-leader-follower-robotic-truck-development-eyeing-commercial-solutions/

Space Mobility: NASA Artemis Lunar Terrain Vehicle

- 2029 ARTEMIS 5 Mission
- Manual & remote operation
- Challenges include:
 - Poor vehicle handling
 - Communications
 - 2-8 second delays
 - Areas with no communications
 - Sun Light
 - Sun light just above horizon
 - Large dark shadowed regions
 - Permanent dark areas
 - Low resolution terrain maps
 - Uncertainty of GPS availability
 - Regolith dust

Perseverance Rover 0.16 kph Autonomous / Remote Control

Artemis LTV BEV, Solar Panels 15 kph Autonomous / Remote Control

Software Certification Consortium

Summary

- Growing demand for vehicle remote operation
- Newer vehicles have necessary enablers for remote operation
- Published safety standards not sufficient
- Emerging ISO standards may help address some gaps
- Teleoperation / human remote real time performance of dynamic driving task not a current focus

Factors for Developing Remote Operation Safety Case

- Impact of Role of Remote Operator on Safety Case
- Human in the loop autonomous
 - Remote operator attentiveness
 - Remote operator override
 - Situational Awareness
 - Loss of communication
- Teleoperation
 - Situational awareness
 - Communication delays / loss
- Operational Environment
 - Static vs. dynamic
 - Controlled vs. uncontrolled
- Operating speed
- Environment sensing
 - Vehicle sensor vs. external sensors
- Loss of communications
 - Transition to safe state vs. continue operation