

PAS 11281:2018

Connected automotive ecosystems – Impact of security on safety – Code of practice



CPNI. Centre for the Protection of National Infrastructure

bsi.

"IF IT'S NOT SECURE, IT'S NOT SAFE".

<page-header>

https://www.npsa.gov.uk/security-informed-safety

SECURITY – UK NCSC

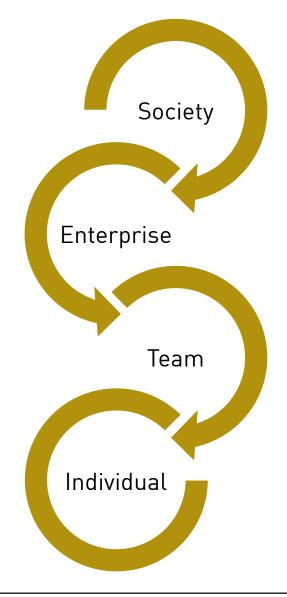
 https://www.ncsc.gov.uk/blogpost/making-principles-basedassurance-a-reality

BLOG POST

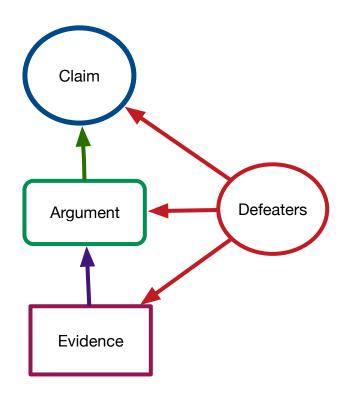
Making Principles Based Assurance a reality

An update on the work to make Principles Based Assurance (PBA) usable in practice.

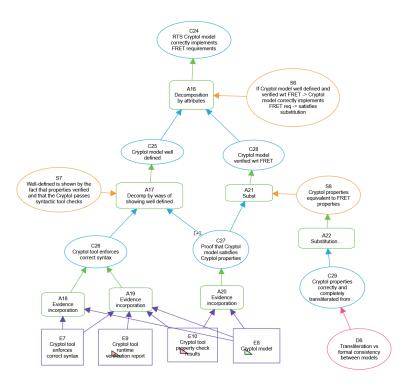
TWO QUESTIONS


- How confident am I in the claim being made?
- What is the impact on the decision?

Reasoning and communication

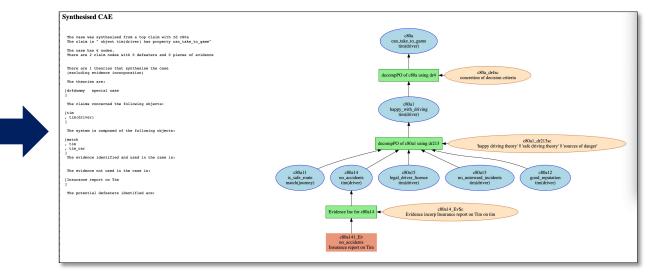

ASSURANCE 2.0

R Bloomfield and J Rushby, Assurance 2.0 Manifesto https://arxiv.org/abs/2004.10474



CLAIMS, ARGUMENTS, EVIDENCE, DEFEATERS

- *Claims* assertions put forward for general acceptance
- Arguments link the evidence to the claim
- *Evidence* the basis of the justification of the claim
- **Defeater** reasons for doubting



ASSURANCE CASE SYNTHESIS

Synthesis Assistant is a research tool designed to synthesize claims, arguments and evidence structures from a root or top-level claim.

- Given:
 - Top-level claim (defined in ErgoAl or node imported from an ASCE file)
 - Definition of the system structure
 - Possible defeaters
 - Theories used to develop the case
 - Evidences for the case
 - LLM support

part of nccgroup

DEVELOPMENT AND ASSESSMENT OF ASSURANCE CASES Positive, negative, residual doubts

- **Positive:** logical soundness of argument plus scientific assessment of theories
 - o Soundness is logical validity (checkable) plus credibility of evidence and reasoning
 - o Credibility of evidence is "weighed" by confirmation measures
 - Forces contemplation of defeaters at evidence level

o And ensured for reasoning steps by (checkable) side-conditions (for deductiveness)

• Negative: active search for and resolution of defeaters

o Defeaters are retained to assist evaluators

o Value their coverage, significance, and diversity more than quantity

• **Residual Doubts:** what about the gaps?

- o Localized for analysis as potentially valid defeaters, inductive steps
- o Need to assess risk: consequences and likelihood
- o We propagate probabilistic belief in several ways to assist different stakeholders
 - o Internalized explicitly within claims and associated models/theories
 - o Conservative sum of doubts
- o Purpose is to explore assessments and tradeoffs, not deliver verdict
- Overall evaluation yields degree of belief in top claim
 - o Sentencing statement or Assurance Case report supports overall verdict

 $\ensuremath{\mathbb{C}}$ 2024 NCC Group plc. All rights reserved.

Confidence report coming on Arxiv

SUMMARY REPORT

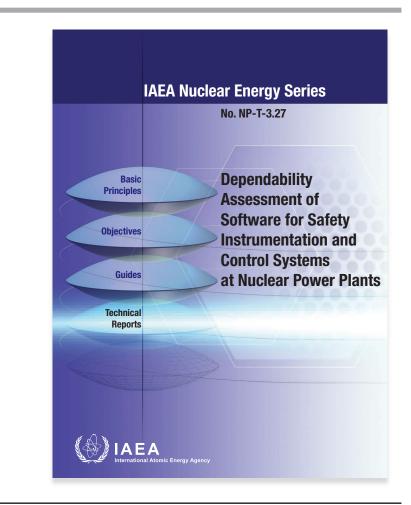
- The purpose of an assurance case is to support decision to deploy (or not) a system or service. The task of evaluators is captured in a summary report:
 - "On the basis of this case and an examination of other relevant documentation, I judge the proposed system to be effective/adequately safe/unsafe/secure..." or, the case is insufficient to make a judgement
 - "I believe my judgement of this case is sound and valid because...
 - I understand the context and criticality of the decision...
 - I understand the system. . .
 - I find a clear thread of reasoning from evidence to claim. . .
 - Evidence provided is sufficient/insufficient for evidence-based decision making
 - I have actively explored doubts. .
 - I have also identified what evidence would be capable of disproving. . .
 - I have considered and addressed biases and fallacies...

• For each of these can map Assurance 2.0 methodology to show where it provides support.

DECISION MAKING - WHAT IS THE IMPACT ON THE DECISION?

- How wrong can I be?
- How much does it matter ?
- Models of "chain of confidence"

 $conf(PE \rightarrow property_{target}).$


But for the case where the assumption does not hold, i.e.

 $(1 - conf(PE \rightarrow property_{target})),$

some alternative worst case bound property value is used, *property*_{worst}.

The expected value of the property includes both cases:

$$property_{expected} = conf(PE \rightarrow property_{target})property_{target} + (1 - conf(PE \rightarrow property_{target}))property_{worst}$$

© 2024 NCC Group plc. All rights reserved.

MODELS OF CHAIN OF CONFIDENCE

- Example: Confidence that pfd requirement is met
- We can model this with a "chain of confidence" approach where :
 - expected pfd = pfd_{target}*conf_{PE} + (1-conf_{PE})* pfd_{max}

Butavoid positional bargaining, 1 dimensionality

• Where

- pfd_{target} is the required pfd
- conf_{PE} is our confidence in the claim of pfd_{target} (based on PE)
- pfd_{max} is the upper bound on the pfd if our judgment of pfd_{target} is wrong

Prof Robin E Bloomfield FREng

Adelard (part of NCC Group) and City, University of London <u>r.e.bloomfield@city.ac.uk</u> robin.bloomfield@nccgroup.com

ADELARD

Assurance 2.0 joint work with John Rushby, SRI

