
LLMs are Useful
for Small Problems
Mike Dodds - HCSS - 6 May 2024

Context: Galois / me

Galois: R&D consulting

● Security / reliability technologies (formal methods, static analysis, crypto)
● Clients: DARPA, US Gov, some commercial

Me: logic, automated reasoning, FM + real-world systems development

● 2004 → 2017: York / Cambridge / York – UK PhD, postdoc, junior professor
● 2017 → now: Galois principal scientist

Context: I am not an AI expert

Me:

● Formal methods expert
● AI/ML idiot

Actual AI experts did the heavy lifting:

● Walt Woods
● Adam Karvonen
● Max von Hippel

Opinion: generative AI isn’t very useful, yet

● Generative AI / LLM is a huge deal, maybe dramatically world-changing

● V democratic: pay $20/month for the world’s most capable model

● It’s easy to make mind-boggling demos

BUT:

● Today, May 2024: ~zero useful tools (… & I’m looking forward to your talks)

What are LLMs
useful for today

for me
for small problems

encountered at Galois

This talk:

➔ Problem 1: Memory Skeleton Discovery

➔ Problem 2: Rust Macro Refolding

➔ Problem 3: RFC Protocol Modelling

Applying GPT-4 to SAW Formal Verification, Adam Karvonen
https://galois.com/blog/2023/08/applying-gpt-4-to-saw-formal-verification/

Small problems

https://galois.com/blog/2023/08/applying-gpt-4-to-saw-formal-verification/

SAW: formal verification for cryptography & other things

Developed by Galois over ~20 years

Deployed in US + other gov, and industry

Public stuff:

● AWS LibCrypto - verified industry crypt library covering AES, SHA, EC, …
● Supranational - verified BLST signature library for blockchain applications

SAW proof pipeline

// Verification target

void idx_10 (uint32_t *arr)
{
 arr [10] = 10;
}

SAW SMT
solvers
SMT

solvers

Result: verified / failed
(memory safe, functionally correct, …)

// SAW-script:
// * Functional spec
// * Variable states
// * Memory layout

Skeletons define the memory layout

// SAW-script:

// * ...

// * Memory layout

idx_10_skel <- function_skeleton MODULE_SKEL "idx_10" ;
idx_10_skel <- skeleton_resize_arg idx_10_skel "arr" ??? true;
let idx_10_spec = do {
 skeleton_globals_pre MODULE_SKEL;
 prestate <- skeleton_prestate idx_10_skel;
 skeleton_exec prestate;
 poststate <- skeleton_poststate idx_10_skel prestate;
 skeleton-globals-post MODULE_SKEL;
} ;
idx_10_override <- llvm_verify MODULE "idx_10" [] false idx_10_spec
z3 ;

What size of memory does
the function need to execute

Problem: find a sufficient memory size

Solution 1: think hard, eyeball the code

● Annoying, time consuming, hard for beginners

Solution 2: write a fancy static analysis

● Eg. an abductive analysis such as Infer
● Complex, costly, unpredictable, v partial code coverage

Solution 3: “Dang it, I’ll just ask the LLM”

● Easy, cheap, stupid
● Works!

BUT: the LLM doesn’t know SAW-Script

Rule of thumb:

● Big public dataset ⇒ high level of LLM capability
● Small/ zero public dataset ⇒ low level of LLM capability

There are vv few examples of SAW-script in public :(

Our approach:

● Teach the LLM how to respond through few-shot prompting
● Lean on the LLM’s strong capabilities with C code

Few-shot prompting: teach the AI by example
Teaching prompt:

Now, let’s try it out…

Result:

��

It’s not quite that easy

Input:

● We have to carve up the program into prompt-size chunks
● The LLM behaviour is v sensitive to the prompt (but less so with GPT-4!)

Output:

● Parse the results
● Deal with cases where the LLM returns non-useful output
● Suggestion might be wrong (aka the hallucination problem)

Results

Note: GPT-4 much
stronger than the rest
(c. August last year)

Why this works: SAW and the LLM form a…

neuro - symbolic loop

SAW LLM

Guess a memory size
● Might be wrong
● Might not answer

Check the answer
● Formal proof
● Pass == “valid guess”

Requests

Guesses

≈ AI thing ≈ formal thing ≈ loop

Many formal methods problems are just search

Guess Check

Write memory skeleton sizes → Check the sizes are correct

Add types to a program → Typecheck the program

Write loop invariants → Check the proof is valid

Synthesize a program that
matches a specification

→ Check the program matches
the specification

[LLM generator] → [Formal methods checker]

More details

Applying GPT-4 to SAW Formal Verification, Adam Karvonen

https://galois.com/blog/2023/08/applying-gpt-4-to-saw-formal-verification/

https://galois.com/blog/2023/08/applying-gpt-4-to-saw-formal-verification/

➔ Problem 1: Memory Skeleton Discovery

➔ Problem 2: Rust Macro Refolding

➔ Problem 3: RFC Protocol Modelling

Using GPT-4 to Assist in C to Rust Translation, Adam Karvonen
https://galois.com/blog/2023/09/using-gpt-4-to-assist-in-c-to-rust-translation/

Small problems

https://galois.com/blog/2023/09/using-gpt-4-to-assist-in-c-to-rust-translation/

C2Rust: a transpiler from C to (unsafe) Rust

Try it yourself! http://c2rust.com

http://c2rust.com

Problem: C2Rust clobbers C macros

#define SQUARE_OF_DECREMENTED(x) ((x – 1) * (x – 1))

int call_macro(int y)
{
 return SQUARE_OF_DECREMENTED(y);
}

pub unsafe extern “C”
fn call_macro(mut y: libc::c_int) -> libc::c_int
{
 return (y – 1 as libc::c_int) *
 (y – 1 as libc::c_int);
}

C2Rust

C programmers really love macros!

Extreme example: 4k loc C program → 24k loc after C2Rust (6x increase!)

Our test application: rav1d (video codec)

● 953loc in C, 4303 loc in Rust (4.5x increase, mostly macros)
● 20 different macros used 85 different times
● Longest macro was 45 lines in the original C codebase

Problem: refold the macros

Solution 1: think hard, rewrite the code

● Annoying, time consuming, hard for beginners

Solution 2: write a fancier transpiler

● Complex, costly, unpredictable

Solution 3: “Dang it, I’ll just ask the LLM”

● Easy, cheap, stupid
● Works!

Ideal behavior: fold the macro back into the Rust code

LLM

macro_rules! square_of_decremented {
 ($x:expr) => {
 ($x – 1 as libc::c_int) *
 ($x – 1 as libc::c_int)
 };
}

pub unsafe extern “C”
fn call_macro(mut y: libc::c_int) -> libc::c_int {
 return square_of_decremented!(y);
}Original C

program

C2Rust
output

Again: guess-and-check / N-S loop

Guess: two-phase process to generate / insert macros

● Prompt with original code + C2Rust version → output: candidate macro
● Prompt with C2Rust code + macro → output: code with folded macros

Check:

● Insight: the original and folded code should have the same compiled form
● Compile the function to HIR (Rust compiler IR)
● Equal HIR == correct folding

Result: the LLM can refold macros!

Test application: mc_tmpl.rs, a file from the rav1d codebase

Results:

● All 20 macros successfully constructed
● Inserted 46 out of the 60 possible macro usages
● File length decreased by 1,600 lines
● 2,900 lines were deleted or rewritten

First success for a range of example macros (bottom right is better)

Note: GPT-4 much
stronger than the rest
(c. fall last year)

More details:

Using GPT-4 to Assist in C to Rust Translation, Adam Karvonen

https://galois.com/blog/2023/09/using-gpt-4-to-assist-in-c-to-rust-translation/

https://galois.com/blog/2023/09/using-gpt-4-to-assist-in-c-to-rust-translation/

➔ Problem 1: Memory Skeleton Discovery

➔ Problem 2: Rust Macro Refolding

➔ Problem 3: RFC Protocol Modelling

Coupling LLMs with FM for RFC Analysis, Max von Hippel
Galois white paper (ask me for a copy)

Small problems:

Protocols are specified in RFCs

Eg. TLS, TCP, and many many others

Varied content and structure:

● pseudocode,
● finite state machine (FSM) diagrams
● message sequence charts (MSCs),
● packet structure diagrams,
● structured text (with if/then statements and semantical indentation),
● mathematical formulae
● plain English

We’d like to have formal specifications of protocols

ASCII RFCs are:

● Untestable
● Ambiguous

Formal model (Tamarin / Spin / Promela / AC2 / Coq …)

● Unambiguous
● Testable / verifiable
● A tool for reaching agreement with human protocol designers (maybe?)

BUT: current RFCs are messy and ambiguous ☹

Graphical ambiguity in
RFC 4960 (left), partially

resolved in RFC 9260
(right).

Problem: write a formal model

Solution 1: think hard, write the model

● Annoying, time consuming, hard for beginners

Solution 2: write a fancy parser for RFCs

● Complex, costly, unpredictable

Solution 3: “Dang it, I’ll just ask the LLM”

● Easy, cheap, stupid
● Works!

… er, it works surprisingly well, but not perfectly.

RFC

Ideal result: LLM turns the RFC into formal model

LLMRFC RFC Formal
model

● ACL2
● Protobuf
● Tamarin
● Spin
● …

Proof tools …

Code generators …

Test generators …

RFCs are varied → many small experiments

Example 1: Synthetic protocol diagram → ACL2

Input: PNG of an ASCII protocol (see right)

Output: an ACL2 model

● Protocol diagram → ACL2: close, but not
perfect. Some human assistance needed

● The LLM does not like diagonal arrows

● ACL2 protocol debugging: much more successful
● Suggested protocol fixes that resolved mistakes

Synthetic protocol diagram

Example 2: Packet diagrams → Protobuf code

Packet diagram (from RFC 9260)

Input: PNG of packet diagram

Output: model / Protobuf code

LLMs today are bad at this task!

● Consistently misinterpreted the
input, produced syntactically invalid
output, or made other mistakes

● Unable to consistently count bits
● Could not produce consistently

syntactically correct Protobuf code.

Results

We experimented with ~20 RFC → model workflows

The LLM can take raw RFC text and sometimes produce close-to correct models!

Observations:

● LLM does better when tasks are split into sub-tasks
● The biggest improvements in performance come from prompt engineering
● LLM is very bad at logical reasoning and math
● GPT-4 was way better than the rest (c. winter 2023)

“What about neuro-symbolic loops, smart guy?”

RFC modelling is hard to fit into this paradigm!

● No ground truth - experts may not agree, systems may not match RFCs
● Humans needed - can’t automatically check for correctness
● Lots of intra-RFC dependencies - hard to decompose

This isn’t really a small problem, more like several big problems!

● Human-to-LLM interaction
● Closed-box testing of hypothesis models
● Merging models under ambiguous data

➔ Problem 1: Memory Skeleton Discovery

➔ Problem 2: Rust Macro Refolding

➔ Problem 3: RFC Protocol Modelling

… so what did we learn?

LLMs are useful for small problem

Big problems: hard to check for success, hard to control hallucinations

Small problems: LLMs can be useful!

Counterpoint: “you’re using a huge sledgehammer to crack a tiny nut”

BUT:

● Many tasks are ‘solved in theory’ but very fiddly to actually automate
● Many tasks are ‘easy’ but arduous for humans at scale
● If you have a sledgehammer, why not hit things with it? :D

Ideal characteristics for a ‘small’ LLM task

● Easy to check if the task was completed correctly

● Partial success is still valuable

● The input is ‘messy’ but well represented in the wild

● Task can be decomposed into small chunks

● Easy for humans in the small, but arduous thanks to quantity

Integration is a barrier

Our experiments:

● Hand-rolled python scripts to call the API and parse the results
● Hand-prompting the LLM (Ollama / ChatGPT)

Ideal future:

● Call into an LLM through a language interface
● Easy ways of parsing LLM results to data
● LLMs construct well-formed

Some speculation

● LLMs / generative AI will stay unacceptably unreliable for the near future

● We should look for guess-and-check loops at multiple scales

● We should look for problems that are ‘easy’ but arduous for humans at scale

● Many big problems contain small problems

● Grinding down the small problems will make the big problems more
tractable

● Early LLM successes will often look like ‘small problems’

Thanks!
miked@galois.com

mailto:miked@galois.com

Further reading
Applying GPT-4 to SAW Formal
Verification, Adam Karvonen

https://galois.com/blog/2023/08/applying
-gpt-4-to-saw-formal-verification/

Using GPT-4 to Assist in C to Rust
Translation, Adam Karvonen

https://galois.com/blog/2023/09/using-g
pt-4-to-assist-in-c-to-rust-translation/

https://galois.com/blog/2023/08/applying-gpt-4-to-saw-formal-verification/
https://galois.com/blog/2023/08/applying-gpt-4-to-saw-formal-verification/
https://galois.com/blog/2023/09/using-gpt-4-to-assist-in-c-to-rust-translation/
https://galois.com/blog/2023/09/using-gpt-4-to-assist-in-c-to-rust-translation/

