LLMs are Useful for Small Problems

Mike Dodds - HCSS - 6 May 2024

galois

Context: Galois / me

Galois: *R&D consulting*

- Security / reliability technologies (formal methods, static analysis, crypto)
- Clients: DARPA, US Gov, some commercial

Me: logic, automated reasoning, FM + real-world systems development

- 2004 \rightarrow 2017: York / Cambridge / York UK PhD, postdoc, junior professor
- $2017 \rightarrow$ now: Galois principal scientist

Context: I am not an AI expert

Me:

- Formal methods expert
- AI/ML idiot

Actual AI experts did the heavy lifting:

- Walt Woods
- Adam Karvonen
- Max von Hippel

Opinion: generative AI isn't very useful, yet

- Generative AI / LLM is a huge deal, maybe dramatically world-changing
- V democratic: pay \$20/month for the world's most capable model
- It's easy to make mind-boggling demos

BUT:

• Today, May 2024: ~zero useful tools (... & I'm looking forward to your talks)

This talk:

What are LLMs useful for today for *me* for small problems

encountered at Galois

Small problems

- Problem 1: Memory Skeleton Discovery
- → Problem 2: Rust Macro Refolding
- → Problem 3: RFC Protocol Modelling

Applying GPT-4 to SAW Formal Verification, Adam Karvonen

https://galois.com/blog/2023/08/applying-gpt-4-to-saw-formal-verification/

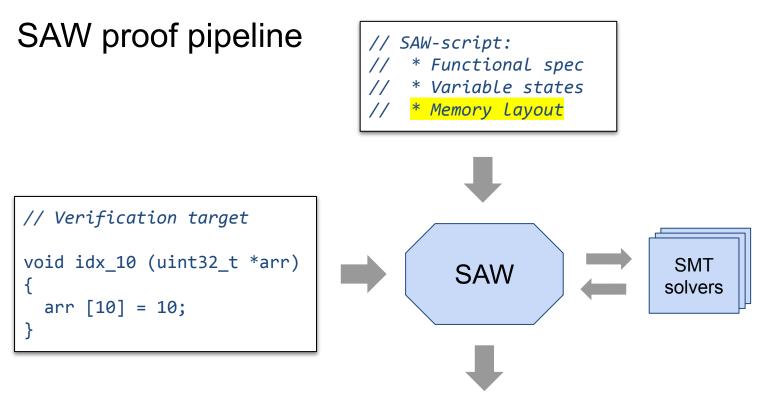
SAW: formal verification for cryptography & other things

Developed by Galois over ~20 years

Deployed in US + other gov, and industry

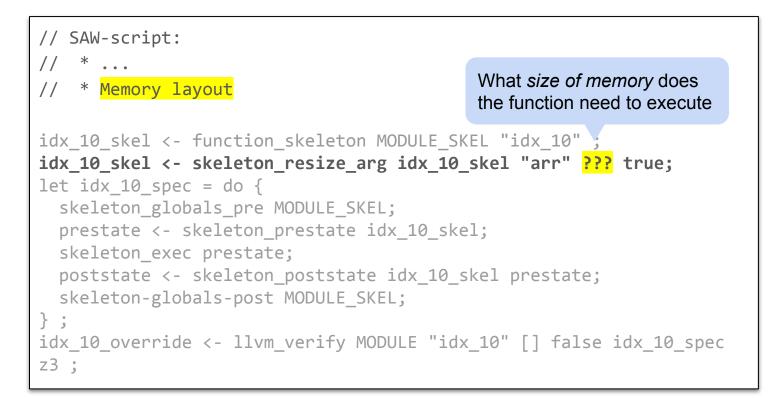
Public stuff:

- AWS LibCrypto verified industry crypt library covering AES, SHA, EC, ...
- Supranational verified BLST signature library for blockchain applications



Result: verified / failed (memory safe, functionally correct, ...)

Skeletons define the memory layout



Problem: find a sufficient memory size

Solution 1: think hard, eyeball the code

• Annoying, time consuming, hard for beginners

Solution 2: write a fancy static analysis

- Eg. an abductive analysis such as *Infer*
- Complex, costly, unpredictable, v partial code coverage

Solution 3: "Dang it, I'll just ask the LLM"

- Easy, cheap, stupid
- Works!

BUT: the LLM doesn't know SAW-Script

Rule of thumb:

- Big public dataset \Rightarrow high level of LLM capability
- Small/ zero public dataset \Rightarrow low level of LLM capability

There are vv few examples of SAW-script in public :(

Our approach:

- Teach the LLM how to respond through *few-shot prompting*
- Lean on the LLM's strong capabilities with C code

Few-shot prompting: teach the AI by example

Teaching prompt:

```
<<|FUNCTION|>>
void idx_10(uint32_t *arr) {
    arr[10] = 10;
}
```

```
<<|0UTPUT|>>
```

Chain of thought for `arr`: The function takes a pointer to an array of uint32_t and sets the value at index 10 to 10. We need to ensure that the array has at least 11 elements to prevent an out-of-bounds error.

```
```sawscript
idx_10_skel <- skeleton_resize_arg idx_10_skel "arr" 11 true;
// Out of bounds error if idx_10 len < 11
// Confidence in provided requirements: 100%</pre>
```

## Now, let's try it out...

```
enum s20_status_t s20_crypt32(uint8_t *key, uint8_t nonce[static 8],
uint32_t si, uint8_t *buf, uint32_t buflen)
{
 ...
 uint8_t n[16] = {0};
 ...
 for (i = 0; i < 8; ++i)
 n[i] = nonce[i];
```

Result:

Chain of thought for `nonce`: The function takes an array of uint8\_t with a static size of 8. We need to ensure that the array has at least 8 elements as indicated by the declaration.

```
```sawscript
s20_crypt32_skel <- skeleton_resize_arg s20_crypt32_skel "nonce" 8
true;
// declaration indicates minimum of 8 elements
// Confidence in provided requirements: 95%</pre>
```

It's not quite that easy

Input:

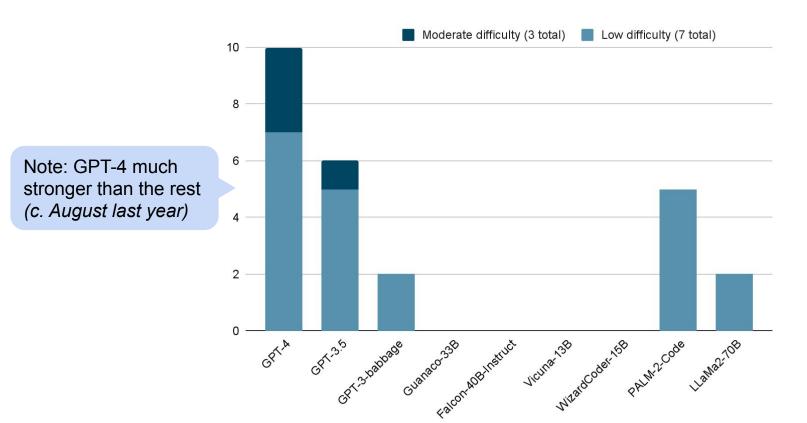
- We have to carve up the program into prompt-size chunks
- The LLM behaviour is v sensitive to the prompt (but less so with GPT-4!)

Output:

- Parse the results
- Deal with cases where the LLM returns non-useful output
- Suggestion might be wrong (aka the hallucination problem)

Results

Correct proofs out of 10 total functions in salsa20



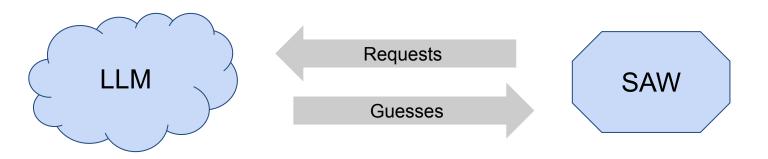
Why this works: SAW and the LLM form a...

neuro - symbolic loop

≈ AI thing

≈ formal thing

≈ loop



Guess a memory size

- Might be wrong
- Might not answer

Check the answer

- Formal proof
- Pass == "valid guess"

Many formal methods problems are just search

	Check
\rightarrow	Check the sizes are correct
\rightarrow	Typecheck the program
\rightarrow	Check the proof is valid
\rightarrow	Check the program matches the specification
	\rightarrow

[LLM generator] \rightarrow [Formal methods checker]

More details

Applying GPT-4 to SAW Formal Verification, Adam Karvonen

https://galois.com/blog/2023/08/applying-gpt-4-to-saw-formal-verification/

Small problems

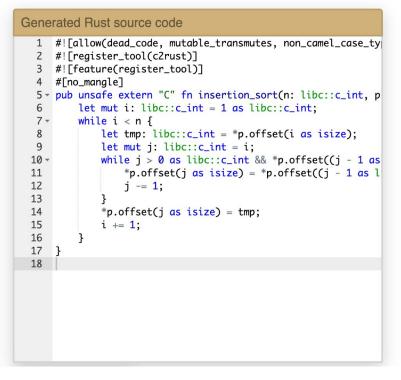
- → Problem 1: Memory Skeleton Discovery
- Problem 2: Rust Macro Refolding
- → Problem 3: RFC Protocol Modelling

Using GPT-4 to Assist in C to Rust Translation, Adam Karvonen

https://galois.com/blog/2023/09/using-gpt-4-to-assist-in-c-to-rust-translation/

C2Rust: a transpiler from C to (unsafe) Rust

```
C source code
  1 - void insertion_sort(int const n, int * const p) {
  2
  3 -
         for (int i = 1; i < n; i++) {
              int const tmp = p[i];
  4
  5
              int j = i;
  6 -
              while (j > 0 && p[j-1] > tmp) {
  7
                      p[j] = p[j-1];
  8
                      i--;
  9
              }
 10
              p[j] = tmp;
 11
 12 }
```



Problem: C2Rust clobbers C macros

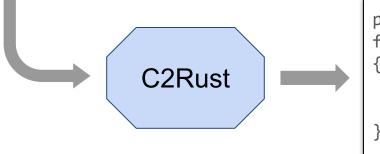
```
#define SQUARE_OF_DECREMENTED(x) ((x - 1) * (x - 1))
```

```
int call_macro(int y)
```

{

}

```
return SQUARE_OF_DECREMENTED(y);
```



```
pub unsafe extern "C"
fn call_macro(mut y: libc::c_int) -> libc::c_int
{
    return (y - 1 as libc::c_int) *
        (y - 1 as libc::c_int);
}
```

C programmers really love macros!

Extreme example: $4k \text{ loc C program} \rightarrow 24k \text{ loc after C2Rust (6x increase!)}$

Our test application: rav1d (video codec)

- 953loc in C, 4303 loc in Rust (4.5x increase, mostly macros)
- 20 different macros used 85 different times
- Longest macro was 45 lines in the original C codebase

Problem: refold the macros

Solution 1: think hard, rewrite the code

• Annoying, time consuming, hard for beginners

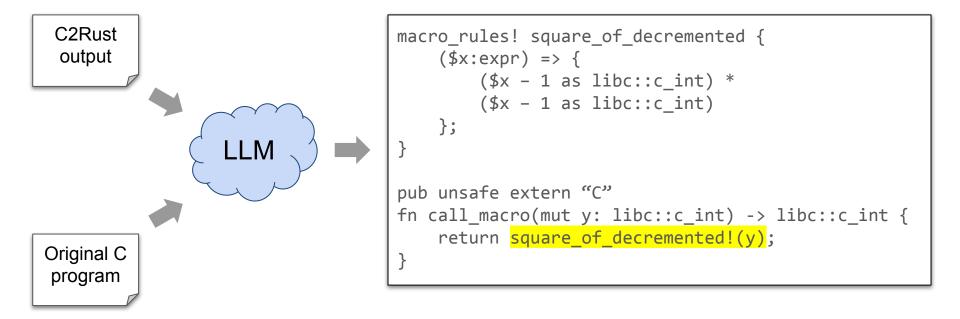
Solution 2: write a fancier transpiler

• Complex, costly, unpredictable

Solution 3: "Dang it, I'll just ask the LLM"

- Easy, cheap, stupid
- Works!

Ideal behavior: fold the macro back into the Rust code



Again: guess-and-check / N-S loop

Guess: two-phase process to generate / insert macros

- Prompt with original code + C2Rust version \rightarrow output: candidate macro
- Prompt with C2Rust code + macro \rightarrow output: code with folded macros

Check:

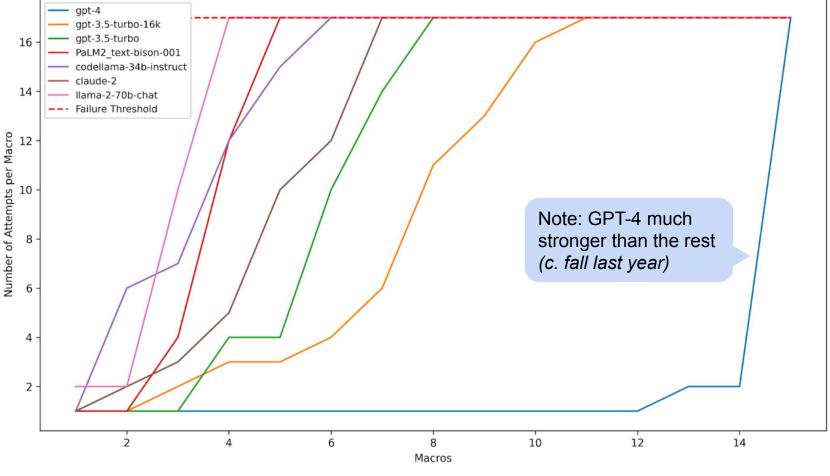
- *Insight:* the original and folded code should have the same compiled form
- Compile the function to HIR (Rust compiler IR)
- Equal HIR == correct folding

Result: the LLM can refold macros!

Test application: mc_tmpl.rs, a file from the rav1d codebase

Results:

- All 20 macros successfully constructed
- Inserted 46 out of the 60 possible macro usages
- File length decreased by 1,600 lines
- 2,900 lines were deleted or rewritten



First success for a range of example macros (bottom right is better)

More details:

Using GPT-4 to Assist in C to Rust Translation, Adam Karvonen

https://galois.com/blog/2023/09/using-gpt-4-to-assist-in-c-to-rust-translation/

Small problems:

- → Problem 1: Memory Skeleton Discovery
- → Problem 2: Rust Macro Refolding
- → Problem 3: RFC Protocol Modelling

Coupling LLMs with FM for RFC Analysis, Max von Hippel Galois white paper (ask me for a copy)

Protocols are specified in RFCs

Eg. TLS, TCP, and many many others

Varied content and structure:

- pseudocode,
- finite state machine (FSM) diagrams
- message sequence charts (MSCs),
- packet structure diagrams,
- structured text (with if/then statements and semantical indentation),
- mathematical formulae
- plain English

We'd like to have formal specifications of protocols

ASCII RFCs are:

- Untestable
- Ambiguous

Formal model (Tamarin / Spin / Promela / AC2 / Coq ...)

- Unambiguous
- Testable / verifiable
- A tool for reaching agreement with human protocol designers (maybe?)

BUT: current RFCs are messy and ambiguous

Graphical ambiguity in RFC 4960 (left), partially resolved in RFC 9260 (right).

Problem: write a formal model

Solution 1: think hard, write the model

• Annoying, time consuming, hard for beginners

Solution 2: write a fancy parser for RFCs

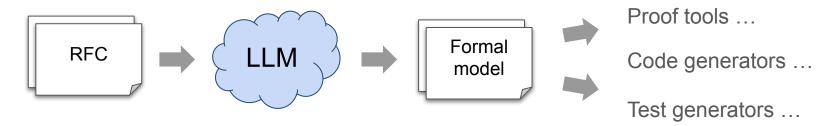
• Complex, costly, unpredictable

Solution 3: "Dang it, I'll just ask the LLM"

- Easy, cheap, stupid
- Works!

... er, it works surprisingly well, but not perfectly.

Ideal result: LLM turns the RFC into formal model



- ACL2
- Protobuf
- Tamarin
- Spin

• ...

RFCs are varied → *many* small experiments

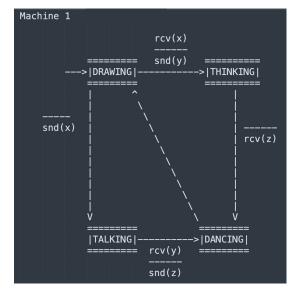
Example 1: Synthetic protocol diagram \rightarrow ACL2

Input: PNG of an ASCII protocol (see right)

Output: an ACL2 model

- Protocol diagram → ACL2: close, but not perfect. Some human assistance needed
- The LLM does not like diagonal arrows

- ACL2 protocol debugging: much more successful
- Suggested protocol fixes that resolved mistakes



Synthetic protocol diagram

Example 2: Packet diagrams → Protobuf code

Input: PNG of packet diagram

Output: model / Protobuf code

LLMs today are bad at this task!

- Consistently misinterpreted the input, produced syntactically invalid output, or made other mistakes
- Unable to consistently count bits
- Could not produce consistently syntactically correct Protobuf code.

Packet diagram (from RFC 9260)

Results

We experimented with ~20 RFC \rightarrow model workflows

The LLM can take raw RFC text and sometimes produce close-to correct models!

Observations:

- LLM does better when tasks are split into sub-tasks
- The biggest improvements in performance come from prompt engineering
- LLM is very bad at logical reasoning and math
- GPT-4 was way better than the rest (c. winter 2023)

"What about neuro-symbolic loops, smart guy?"

RFC modelling is hard to fit into this paradigm!

- No ground truth experts may not agree, systems may not match RFCs
- Humans needed can't automatically check for correctness
- Lots of intra-RFC dependencies hard to decompose

This isn't really a small problem, more like several big problems!

- Human-to-LLM interaction
- Closed-box testing of hypothesis models
- Merging models under ambiguous data

- → Problem 1: Memory Skeleton Discovery
- → Problem 2: Rust Macro Refolding
- → Problem 3: RFC Protocol Modelling

... so what did we learn?

LLMs are useful for small problem

Big problems: hard to check for success, hard to control hallucinations

Small problems: LLMs can be useful!

Counterpoint: *"you're using a huge sledgehammer to crack a tiny nut"* BUT:

- Many tasks are 'solved in theory' but very fiddly to actually automate
- Many tasks are 'easy' but arduous for humans at scale
- If you have a sledgehammer, why not hit things with it? :D

Ideal characteristics for a 'small' LLM task

- Easy to check if the task was completed correctly
- Partial success is still valuable
- The input is 'messy' but well represented in the wild
- Task can be decomposed into small chunks
- Easy for humans in the small, but arduous thanks to quantity

Integration is a barrier

Our experiments:

- Hand-rolled python scripts to call the API and parse the results
- Hand-prompting the LLM (Ollama / ChatGPT)

Ideal future:

- Call into an LLM through a language interface
- Easy ways of parsing LLM results to data
- LLMs construct well-formed

Some speculation

- LLMs / generative AI will stay unacceptably unreliable for the near future
- We should look for guess-and-check loops at multiple scales
- We should look for problems that are 'easy' but arduous for humans at scale
- Many big problems contain small problems
- Grinding down the small problems will make the big problems more tractable
- Early LLM successes will often look like 'small problems'

Thanks!

miked@galois.com

galois

Further reading

Applying GPT-4 to SAW Formal Verification, Adam Karvonen

https://galois.com/blog/2023/08/applying -gpt-4-to-saw-formal-verification/

Using GPT-4 to Assist in C to Rust Translation, Adam Karvonen

https://galois.com/blog/2023/09/using-g pt-4-to-assist-in-c-to-rust-translation/

