
LLMs are Useful 
for Small Problems
Mike Dodds - HCSS - 6 May 2024



Context:  Galois / me

Galois:  R&D consulting 

● Security / reliability technologies (formal methods, static analysis, crypto)
● Clients:  DARPA, US Gov, some commercial 

Me:  logic, automated reasoning, FM + real-world systems development 

● 2004 → 2017:  York / Cambridge / York – UK PhD, postdoc, junior professor
● 2017 → now:  Galois principal scientist



Context:  I am not an AI expert

Me:

● Formal methods expert
● AI/ML idiot

Actual AI experts did the heavy lifting: 

● Walt Woods 
● Adam Karvonen  
● Max von Hippel 



Opinion:  generative AI isn’t very useful, yet

● Generative AI / LLM is a huge deal, maybe dramatically world-changing

● V democratic: pay $20/month for the world’s most capable model   

● It’s easy to make mind-boggling demos 

BUT: 

● Today, May 2024: ~zero useful tools   ( … & I’m looking forward to your talks) 



What are LLMs 
useful for today

for me
for small problems 

encountered at Galois

This talk:



➔ Problem 1: Memory Skeleton Discovery

➔ Problem 2: Rust Macro Refolding 

➔ Problem 3: RFC Protocol Modelling

Applying GPT-4 to SAW Formal Verification, Adam Karvonen
https://galois.com/blog/2023/08/applying-gpt-4-to-saw-formal-verification/

Small problems 

https://galois.com/blog/2023/08/applying-gpt-4-to-saw-formal-verification/


SAW: formal verification for cryptography & other things

Developed by Galois over ~20 years

Deployed in US + other gov, and industry

Public stuff: 

● AWS LibCrypto - verified industry crypt library covering AES, SHA, EC, …
● Supranational - verified BLST signature library for blockchain applications 



SAW proof pipeline

// Verification target

void idx_10 (uint32_t *arr) 
{ 
  arr [10] = 10;
}

SAW SMT 
solvers
SMT 

solvers

Result: verified / failed
(memory safe, functionally correct, … ) 

// SAW-script: 
//  * Functional spec
//  * Variable states
//  * Memory layout 



Skeletons define the memory layout 

// SAW-script: 

//  * ...

//  * Memory layout

idx_10_skel <- function_skeleton MODULE_SKEL "idx_10" ;
idx_10_skel <- skeleton_resize_arg idx_10_skel "arr" ??? true;
let idx_10_spec = do {
  skeleton_globals_pre MODULE_SKEL;
  prestate <- skeleton_prestate idx_10_skel;
  skeleton_exec prestate;
  poststate <- skeleton_poststate idx_10_skel prestate;
  skeleton-globals-post MODULE_SKEL;
} ;
idx_10_override <- llvm_verify MODULE "idx_10" [] false idx_10_spec 
z3 ;

What size of memory does 
the function need to execute



Problem: find a sufficient memory size 

Solution 1: think hard, eyeball the code 

● Annoying, time consuming, hard for beginners  

Solution 2: write a fancy static analysis

● Eg. an abductive analysis such as Infer 
● Complex, costly, unpredictable, v partial code coverage  

Solution 3:  “Dang it, I’ll just ask the LLM” 

● Easy, cheap, stupid
● Works! 



BUT:  the LLM doesn’t know SAW-Script 

Rule of thumb: 

● Big public dataset  ⇒  high level of LLM capability 
● Small/ zero public dataset  ⇒  low level of LLM capability 

There are vv few examples of SAW-script in public :( 

Our approach: 

● Teach the LLM how to respond through few-shot prompting
● Lean on the LLM’s strong capabilities with C code 



Few-shot prompting: teach the AI by example
Teaching prompt:



Now, let’s try it out… 



Result:

��



It’s not quite that easy 

Input: 

● We have to carve up the program into prompt-size chunks
● The LLM behaviour is v sensitive to the prompt (but less so with GPT-4!) 

Output: 

● Parse the results
● Deal with cases where the LLM returns non-useful output 
● Suggestion might be wrong (aka the hallucination problem)



Results

Note: GPT-4 much 
stronger than the rest 
(c. August last year)



Why this works: SAW and the LLM form a… 

neuro - symbolic  loop 

SAW LLM

Guess a memory size
● Might be wrong
● Might not answer 

Check the answer
● Formal proof
● Pass == “valid guess”

Requests

Guesses

≈  AI thing ≈  formal thing ≈  loop



Many formal methods problems are just search

Guess Check

Write memory skeleton sizes → Check the sizes are correct

Add types to a program → Typecheck the program

Write loop invariants → Check the proof is valid 

Synthesize a program that 
matches a specification

→ Check the program matches 
the specification

[LLM generator] → [Formal methods checker]



More details 

Applying GPT-4 to SAW Formal Verification, Adam Karvonen

https://galois.com/blog/2023/08/applying-gpt-4-to-saw-formal-verification/ 

https://galois.com/blog/2023/08/applying-gpt-4-to-saw-formal-verification/


➔ Problem 1: Memory Skeleton Discovery

➔ Problem 2: Rust Macro Refolding 

➔ Problem 3: RFC Protocol Modelling

Using GPT-4 to Assist in C to Rust Translation, Adam Karvonen
https://galois.com/blog/2023/09/using-gpt-4-to-assist-in-c-to-rust-translation/ 

Small problems 

https://galois.com/blog/2023/09/using-gpt-4-to-assist-in-c-to-rust-translation/


C2Rust: a transpiler from C to (unsafe) Rust 

Try it yourself!   http://c2rust.com 

http://c2rust.com


Problem:  C2Rust clobbers C macros   

#define SQUARE_OF_DECREMENTED(x) ((x – 1) * (x – 1))

int call_macro(int y) 
{
    return SQUARE_OF_DECREMENTED(y);
}

pub unsafe extern “C” 
fn call_macro(mut y: libc::c_int) -> libc::c_int 
{
    return (y – 1 as libc::c_int) *
           (y – 1 as libc::c_int);
}

C2Rust 



C programmers really love macros! 

Extreme example:  4k loc C program  →   24k loc after C2Rust (6x increase!)

Our test application:  rav1d (video codec)

● 953loc in C, 4303 loc in Rust (4.5x increase, mostly macros) 
● 20 different macros used 85 different times
● Longest macro was 45 lines in the original C codebase



Problem: refold the macros 

Solution 1: think hard, rewrite the code 

● Annoying, time consuming, hard for beginners  

Solution 2: write a fancier transpiler

● Complex, costly, unpredictable

Solution 3: “Dang it, I’ll just ask the LLM”  

● Easy, cheap, stupid 
● Works! 



Ideal behavior: fold the macro back into the Rust code

LLM

macro_rules! square_of_decremented {
    ($x:expr) => {
        ($x – 1 as libc::c_int) * 
        ($x – 1 as libc::c_int)
    };
}

pub unsafe extern “C” 
fn call_macro(mut y: libc::c_int) -> libc::c_int {
    return square_of_decremented!(y);
}Original C 

program 

C2Rust 
output



Again:  guess-and-check / N-S loop  

Guess: two-phase process to generate / insert macros

● Prompt with original code + C2Rust version → output: candidate macro
● Prompt with C2Rust code + macro → output: code with folded macros

Check: 

● Insight: the original and folded code should have the same compiled form 
● Compile the function to HIR (Rust compiler IR) 
● Equal HIR == correct folding 



Result: the LLM can refold macros! 

Test application: mc_tmpl.rs, a file from the rav1d codebase

Results: 

● All 20 macros successfully constructed
● Inserted 46 out of the 60 possible macro usages
● File length decreased by 1,600 lines
● 2,900 lines were deleted or rewritten



First success for a range of example macros (bottom right is better)

Note: GPT-4 much 
stronger than the rest 
(c. fall last year)



More details:

Using GPT-4 to Assist in C to Rust Translation, Adam Karvonen

https://galois.com/blog/2023/09/using-gpt-4-to-assist-in-c-to-rust-translation/ 

https://galois.com/blog/2023/09/using-gpt-4-to-assist-in-c-to-rust-translation/


➔ Problem 1: Memory Skeleton Discovery

➔ Problem 2: Rust Macro Refolding 

➔ Problem 3: RFC Protocol Modelling

Coupling LLMs with FM for RFC Analysis, Max von Hippel
Galois white paper (ask me for a copy)

Small problems: 



Protocols are specified in RFCs

Eg. TLS, TCP, and many many others

Varied content and structure: 

● pseudocode, 
● finite state machine (FSM) diagrams
● message sequence charts (MSCs), 
● packet structure diagrams, 
● structured text (with if/then statements and semantical indentation), 
● mathematical formulae
● plain English



We’d like to have formal specifications of protocols

ASCII RFCs are:  

● Untestable 
● Ambiguous 

Formal model (Tamarin / Spin / Promela / AC2 / Coq … )  

● Unambiguous 
● Testable / verifiable 
● A tool for reaching agreement with human protocol designers (maybe?) 



BUT: current RFCs are messy and ambiguous  ☹

Graphical ambiguity in 
RFC 4960 (left), partially 

resolved in RFC 9260 
(right).



Problem: write a formal model 

Solution 1: think hard, write the model 

● Annoying, time consuming, hard for beginners  

Solution 2: write a fancy parser for RFCs

● Complex, costly, unpredictable

Solution 3: “Dang it, I’ll just ask the LLM”  

● Easy, cheap, stupid 
● Works! 

… er, it works surprisingly well, but not perfectly. 



RFC 

Ideal result: LLM turns the RFC into formal model

LLMRFC RFC Formal 
model 

● ACL2 
● Protobuf
● Tamarin
● Spin 
● … 

Proof tools … 

Code generators … 

Test generators … 



RFCs are varied → many small experiments



Example 1: Synthetic protocol diagram → ACL2 

Input: PNG of an ASCII protocol (see right) 

Output: an ACL2 model 

● Protocol diagram → ACL2:   close, but not 
perfect. Some human assistance needed

● The LLM does not like diagonal arrows

● ACL2 protocol debugging: much more successful
● Suggested protocol fixes that resolved mistakes 

Synthetic protocol diagram



Example 2: Packet diagrams → Protobuf code

Packet diagram (from RFC 9260)

Input: PNG of packet diagram

Output: model / Protobuf code 

LLMs today are bad at this task! 

● Consistently misinterpreted the 
input, produced syntactically invalid 
output, or made other mistakes

● Unable to consistently count bits 
● Could not produce consistently 

syntactically correct Protobuf code.



Results

We experimented with ~20 RFC → model workflows 

The LLM can take raw RFC text and sometimes produce close-to correct models! 

Observations: 

● LLM does better when tasks are split into sub-tasks
● The biggest improvements in performance come from prompt engineering
● LLM is very bad at logical reasoning and math 
● GPT-4 was way better than the rest (c. winter 2023) 



“What about neuro-symbolic loops, smart guy?”

RFC modelling is hard to fit into this paradigm! 

● No ground truth - experts may not agree, systems may not match RFCs
● Humans needed - can’t automatically check for correctness 
● Lots of intra-RFC dependencies - hard to decompose 

This isn’t really a small problem, more like several big problems! 

● Human-to-LLM interaction 
● Closed-box testing of hypothesis models
● Merging models under ambiguous data



➔ Problem 1: Memory Skeleton Discovery

➔ Problem 2: Rust Macro Refolding 

➔ Problem 3: RFC Protocol Modelling

… so what did we learn?



LLMs are useful for small problem

Big problems:  hard to check for success, hard to control hallucinations

Small problems:  LLMs can be useful!

Counterpoint: “you’re using a huge sledgehammer to crack a tiny nut”

BUT: 

● Many tasks are ‘solved in theory’ but very fiddly to actually automate 
● Many tasks are ‘easy’ but arduous for humans at scale 
● If you have a sledgehammer, why not hit things with it?  :D



Ideal characteristics for a ‘small’ LLM task

● Easy to check if the task was completed correctly 

● Partial success is still valuable 

● The input is ‘messy’ but well represented in the wild 

● Task can be decomposed into small chunks 

● Easy for humans in the small, but arduous thanks to quantity 



Integration is a barrier

Our experiments: 

● Hand-rolled python scripts to call the API and parse the results 
● Hand-prompting the LLM (Ollama / ChatGPT) 

Ideal future: 

● Call into an LLM through a language interface
● Easy ways of parsing LLM results to data 
● LLMs construct well-formed 



Some speculation 

● LLMs / generative AI will stay unacceptably unreliable for the near future

● We should look for guess-and-check loops at multiple scales 

● We should look for problems that are ‘easy’ but arduous for humans at scale

● Many big problems contain small problems

● Grinding down the small problems will make the big problems more 
tractable 

● Early LLM successes will often look like ‘small problems’



Thanks!
miked@galois.com 

mailto:miked@galois.com


Further reading
Applying GPT-4 to SAW Formal 
Verification, Adam Karvonen

https://galois.com/blog/2023/08/applying
-gpt-4-to-saw-formal-verification/ 

Using GPT-4 to Assist in C to Rust 
Translation, Adam Karvonen

https://galois.com/blog/2023/09/using-g
pt-4-to-assist-in-c-to-rust-translation/

https://galois.com/blog/2023/08/applying-gpt-4-to-saw-formal-verification/
https://galois.com/blog/2023/08/applying-gpt-4-to-saw-formal-verification/
https://galois.com/blog/2023/09/using-gpt-4-to-assist-in-c-to-rust-translation/
https://galois.com/blog/2023/09/using-gpt-4-to-assist-in-c-to-rust-translation/

