
SYSERTSKITE: Approach 3. where guidance is provided
by syntactic + semantic specs via refinement types
(a.k.a. predicate subtypes) + SMT-solving.

• Much richer than syntactic guidance;
correctness can often be captured
with semantics specs;

• Novel type-checking engine does not need complete
output; it checks output token sequence incrementally:

• At each step, it detects and filters out ill-typed tokens that would never lead to correct code;
tokens can be reranked if type-checking can symbolically infer good tokens ahead;

• Naturally fits beam search technique; can be combined with approach 2. when reaching 
dead-ends; can be used in a Monte-Carlo Tree Search instead of LLM sequence production.

SYSERTSKITE:
Syntactic & Semantic guidance from Refinement Types for Synthesis,
via a toKen-based Incremental Type-checking Engine

https://www.csl.sri.com/users/sgl/sysertskite

Stéphane Graham-Lengrand, SRI International

Example synthesis task: Synthesize sequence of instructions (i.e., sequence of tokens)
to transform state (x = 0, count = 0) to state where count = 1000. Only two kinds of instructions:

evenHash() mutates (x, count) to (hash(x), count+1) but crashes if x is odd

oddHash() mutates (x, count) to (hash(x), count+1) but crashes if x is even

• Only one single correct solution. Finding the correct sequence of 1000 instructions requires 
computing hash precisely, otherwise 2"#$$$ probability of getting it right. LLMs alone fail.

• Approach 1 works by “using code interpreter”, but fails at minor variant that requires symbolic 
reasoning. SYSERTSKITE drives the synthesis of correct sequence by eliminating crashing tokens.

Challenge: LLMs alone cannot be trusted to synthesize correct code.

Synthesizing correct code / checking output code correctness may require performing
arbitrarily complex computation (e.g., compute a hash) or reasoning (e.g., prove a theorem).

LLMs alone cannot be trusted to do that correctly.

Solution: Involve external trustworthy tools (e.g., code interpreter, formal verification tool)

Possible approaches:
1. Train LLM to select appropriate tools + produce the inputs they will run on.

Can it be trusted to use external tools correctly?

2. Use trustworthy tools to verify LLM’s complete output
+ iterate calls to LLM with new prompts until the output is correct.

A posteriori checking means search space remains huge at every iteration. Convergence?

3. Use trustworthy tools to dynamically guide LLM output, token-per-token, towards
correct-by-construction output. Guidance means search space is reduced by external tool.

Hope: Single prompt is enough & model size can be a lot smaller.

Classic case in state of the art: force output to adhere to grammar (Syntax-Guided Synthesis).

But adhering to grammar is rarely enough to capture correctness.

ML 
model

Tokens so far

N
ex

t 
to

ke
n 

op
ti

on
s

Incremental 
refinement 

type-checker

Ranking

SMT-
solver

Filtering /

reranking

ill-typed

ill-typed

maybe

maybe

Original 
synthesis spec

As prompt

A
s 

ty
pe

to
 in

ha
bi

t

…


