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Research Interests

Distributed algorithms

 Distributed shared memory systems

 Distributed computations over wireless networks

 Distributed optimization
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 Motivation – distributed machine learning

 Research problems

– Privacy-preserving distributed optimization

– Adversarial learning

– Robustness to adversarial samples
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Example – Image Classification



Deep
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Deep Neural Networks
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How to train your dragon

 Given a machine structure

 Parameters are the only free variables

 Choose parameters that maximize accuracy
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How to train your network

 Given a machine structure

 Parameters are the only free variables

 Choose parameters to maximize accuracy

Optimize a suitably defined

cost function h(w)

to find the right parameter vector w
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1

3

2

x1

x3

x2

W132

a1

a2

a3

a4

Optimize a suitably defined

cost function h(w)

to find the right parameter vector wparameters

w



Cost Function h(w)

 Consider input x

 True classification y(x)

 Machine classification a(x,w) using parameters w

 Cost for input x  = || y(x)-a(x,w) ||2

 Total cost h(w) = Σ || y(x)-a(x,w) ||2

x
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Convex Optimization

Wikipedia

h(W)

w131

w132

W = (w131,w132,…)
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– Robustness to adversarial samples



Distributed Machine Learning

 Data is distributed

across different

agents

Mobile users

Hospitals

Competing vendors
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Distributed Machine Learning

 Data is distributed

across different  Collaborate to learn 

agents

Training


Optimize

cost function

Σ hi(w)
i

h1(w) h2(w)

h4(w)h3(w)
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Distributed Optimization

 30+ years or work

 Recent interest due to machine learning applications
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Distributed Optimization

Different architectures

 Peer-to-peer

29
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Distributed Optimization

Different architectures

 Peer-to-peer

 Parameter server
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Distributed Gradient Method
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Distributed Gradient Method
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Works in incomplete networks too !!

h1(w)

h3(w)

h2(w)W1[0] W2[0]

W3[0]

W1[0]

W1[0]

W2[0]

W3[0]

W3[0] = T - 𝛂 ∇h3(T)

T = ½W3[0] + ¼W1[0]+ ¼W2[0]



Parameter Server Architecture

h1(w) h3(w) h2(w)

Parameter 

server
W[1] = W[0] – 𝛂 ∑∇hi(W[0])
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Privacy Challenge

 Peers may learn

each other’s data

 Parameter server

may learn data
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Privacy-Preserving Optimization

Optimize

cost function

Σ hi(w)
i

Can agents collaboratively learn,

and yet protect own data ?



Peer-to-Peer Architecture
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Add Inter-Dependent Noise
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Add Inter-Dependent Noise
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Key Idea

 Add correlated noise in information exchanged 

between agents

 Noise “cancels” over the network

 But can prevent coalition of bad agents learning 

information about others
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Adversarial Agents

 Adversarial agents

may send bogus information

 Learned parameters impacted
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Adversarial Agents
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Adversarial Agents

50

h1(w)

h3(w)

h2(w)

h1(w) h3(w) h2(w)

Parameter 

server

Can good agents learn

despite bad agents?

Yes!*



Key Idea

 Need to filter bad information

 Define “outliers” appropriately
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Adversarial Samples

 Machine learning seems to work well

 If it seems too good to be true …
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Adversarial Samples

 Several researchers have shown that

it is easy to fool a machine
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original       adversarial

sample       sample



Can we solve the problem?

May be … or not

 Some interesting ideas that seem promising

in early evaluations

… but not mature enought to report yet
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Summary

 Achieving privacy/security in learning is non-trivial

 Some promising progress

 Plenty to keep us busy for a while …

disc.ece.illinois.edu
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Parameter Server Architecture

 Distributed gradient method
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Distributed Optimization

h1(w) h3(w) h2(w)

Parameter 

server

W[0]

W[0]



Distributed Optimization
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