Anonymity in the Bitcoin Peer-to-Peer Network

Shaileshh Bojja Venkatakrishnan, Giulia Fanti, Andrew Miller, Pramod Viswanath

Bitcoin Market Cap over Time

Why do People Use Cryptocurrencies?

Currency Stability

Investment

Technical Properties/ Ideology

"Untraceable Bitcoin"

Teenagers using untraceable currency Bitcoin to buy dangerous drugs online

Fears have been raised as children as young as 14 are getting parcels of legal highs delivered to their home

This is false.

How can users be deanonymized?

Entire transaction histories can be compromised.

Meiklejohn et al., 2013

What about the peer-to-peer network?

Attacks on the Network Layer

Redesign

Dandelion

Under submission, 2017

Analysis

How bad is the problem?

Flooding Protocols

Trickle (pre-2015)

Diffusion (post-2015)

Does diffusion provide stronger anonymity than trickle spreading?

D-regular trees

Results: d-Regular Trees

Theorem: The first-spy and maximum-likelihood probabilities of detection for diffusion and trickle are asymptotically identical in d.

Results: d-Regular Trees

	Trickle	Diffusion
First-Timestamp	$O\left(\frac{\log d}{d}\right)$	$O\left(\frac{\log d}{d}\right)$
Maximum-Likelihood	$\Omega(1)$	$\Omega(1)$

Results: Trees

Number of Corrupt Connections

Results: Bitcoin Graph

Number of Corrupt Connections

Diffusion does not have (significantly) better anonymity properties than trickle.

Redesign

Can we design a better network?

Adversarial Model

Metric for Anonymity

Mapping *M*

E[Recall] =
Probability of Detection

Goal:

Design a distributed flooding protocol that minimizes the maximum precision and recall achievable by a computationally-unbounded adversary.

Fundamental Limits

What can we control?

Given a graph, how do we spread content?

What is the underlying graph topology?

How often does the graph change?

Why Dandelion spreading?

Graph Topology: Line

Dynamicity: High

Change the anonymity graph frequently.

DANDELION Network Policy

Given a graph, how do we spread content?

What is the anonymity graph topology?

How often does the graph change?

What is the precision of DANDELION?

Performance: Achievable Region

Why does DANDELION work?

Strong mixing properties.

DANDELION vs. Tor, Crowds, etc.

1) Messages propagate over the **same** cycle graph

2) Anonymity graph changes dynamically.

3) No encryption required.

How practical is this?

Implementation

Constructing a Hamiltonian cycle

Degree

What can the adversary do?

Learn the graph

Misbehave during graph construction

Learning the anonymity graph

Manipulating the anonymity graph

DANDELION++ Network Policy

Given a graph, how do we spread content?

What is the anonymity graph topology?

How often does the graph change?

Comparison with Alternative Solutions

Connect through Tor

I2P Integration (e.g. Monero)

Next Steps

Analyze stronger adversaries Practical demonstration of viability

Take-Home Messages

1) Bitcoin has poor P2P anonymity.

2) Moving from trickle to diffusion did not help.

3) DANDELION++ may be a lightweight solution for certain classes of adversaries.