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Industrial Control Systems (ICS)

* Control many critical infrastructures
— e.g., power grids, gas and oil distribution networks,
wastewater treatment, transportation systems
* Modern ICSes increasingly adopt Internet technology to
boost control efficiency, e.g., smart grid
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More Efficient or More Vulnerable?
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Cyber Threats in Power Grids

Communications 14, 6%
Commerical Facilities 7, 3%
Chemical 4, 2%

Unknown 6, 2%

Water 14, 6%

e 245 incidents,
reported by ICS-CERT

* 32% in energy sector

Transportation 12, 5%

Nuclear 6, 2% \
Information Technology 5, 2% Critical \
Manufacturing
Healthcare 15, 6% 65, 27% ° 80 OOO I"ESIdentS |n
= )
Government Facilities 13, 5% o | WeSte rn U kra I ne
: : 0
Food and Ag 2, 1% - Energy 79, 32% * 6 hours, lost power

on Dec 23, 2015

© THEDAILY SIGNAL

Ukraine Goes Dark: Russia-Attributed Hackers Take Down Power Grid

Riley Walters / January 13,2016 / 1comments

Picture source: 1. National Cybersecurity and Communications Integration Center (NCCIC). ICS-CERT Monitor Sep 2014 — Feb 2015

2. http://dailysignal.com/2016/01/13/ukraine-goes-dark-russia-attributed-hackers-take-down-power-grid/ is-{"
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Protection of Industrial Control Systems

 Commercial of-the-shelf products
— e.g., firewalls, antivirus software
— fine-grained protection at single device only
* How to check system-wide requirements
— Security policy (e.g., access control)

— Performance requirement (e.g., end-to-end delay)

* How to safely incorporate existing networking
technologies in control system infrastructures?

<
ILLINOIS INSTITUTE‘!//

OF TECHNOLOGY



A Representative Smart Grid Control Network
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Challenges and Opportunities
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Differences and Similarities

A Utility Control Network An Enterprise Network

Similarities Differences
* black hole avoidance * strictly defined forwarding paths
* |oop mitigation * end-to-end performance
* fast convergence speeds guarantee
* priority control * system-wide visualization
* multiple services on a single ¢ real-time monitoring

physical channel * adeny-by-default security model
. .
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Problem Statement

* Minimize the gaps with an SDN-enabled
communication architecture for ICS

* Create innovative applications for ICS
security and resiliency
— Real-time network verification
— Self-healing network management
— Context-aware intrusion detection

— Many more ...
ICS — industrial control system

SDN - software-defined networking
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SDN Architecture
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SDN Architecture - Continue
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An SDN-Enabled Power Grid

* Instability Impact
* Loss of Load
* Synchronization Failure
* Contingency
* Loss of Economics
Power Control Applications G
Demand Frequency State Topology
Response Control Estimation Control
Cyber Resources
SCADA Field Communication Routin
Servers Devices Networks &
T T w T T Cyber Attacks
Denial of False Data Malware Insider
Service Injection Attack

Current Power Grid: Potential Cyber
Attacks and Their Implications
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Communication Systems
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Future SDN-enabled Power Grid: A
Cyber-Attack-Resilient Platform

ILLINOIS INSTITUTE V
OF TECHNOLOGY



Transition to an SDN-Enabled IIT Microgrid

* Real-time reconfiguration of power distribution assets
* Real-time islanding of critical loads
e Real-time optimization of power supply resources
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Transition to an SDN-Enabled

Microgrid
 SDN-based Applications

— Real-time Verification
— Self-healing PMU

* Hybrid Testbed

— SDN emulation + Power Distribution System

Simulation

ILLINOIS INSTITUTE V
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Application 1: Network Verification
- Motivation
89% of operators never sure that config changes are
bug-freel
82% concerned that changes would cause problems
with existing functionality'

—
Unauthorized access 2 W
Unavailable critical services _%_-"""'=’<H
System performance drop ~L
* |nstability
* Loss of load

e Synchronization Failure

1. Survey of network operators: [Kim, Reich, Gupta, Shahbaz, Feamster, Clark, USENIX NSDI 2015] S
2. Pictures borrowed from VeriFlow slides [Khurshid, Zou, Zhou, Caesar, Godfrey NSDI 2013] ILLINOIS INSTITUTE\!//
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Verification System Design

network-layer states
topology (e.g., forwarding tables)

Policy Engine | | ICS Application Models
System Framework N
Dynamic Model Diagnosis o ;/fsrl{]:nd
Up);late/SeIection Verification =P Zﬁlr@gabmnes Updates
| Network Models
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—> Dynamic Network Data (topology, forwarding tables ...)
Dynamic Application Data (control updates ...)
—> User-specified Policy (security, performance ...)
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Network-Layer Verification

Prior Work

Network Controller

VeriFlow

Generate
equivalence
classes

New ruIesi

Generate
forwarding
graphs

Run queries

W lRuIes violating

network invariant(s)

-
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Pictures borrowed from VeriFlow slides [Khurshid, Zou, Zhou, Caesar, Godfrey NSDI 2013]

Diagnosis report

e Type of invariant

violation
e Affected set of
packets

FlowChecker
[Al-Shaer et al.,SafeConfig2010]

HeaderSpaceAnalysis
[Kazemian et al.,,NSDI2012]

Anteater
[Mai et al.,SIGCOMM2011]

VeriFlow
[Khurshid et al., NSDI12012]
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Challenges — Timing Uncertainty

Network devices are asynchronous and
distributed in nature

Controller

Install rule 2

rule 2 %

SW|tCh A SWltCh B

Remove rule 1

/

rule 1
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Challenges — Timing Uncertainty

Controller
Remove rule 1
(delayed) /

Install rule 2
Possible network states:
\ (e—>0) (@ °)
_—rule 1 TN (e=0) (0«00

Packet —— '
>
_.(‘% ruleﬁ
SwitchA e Switch B

Loop-freedom Violation
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Uncertainty-aware Modeling

* Naively, represent every possible network state O(2"n)
* Uncertain graph: represent all possible combinations

“certain”

“uncertain”
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Update synthesis via verification

Controller mod A->C to A->F
m of Updates add F->G
add G->H

cee add H->B

Update queue Verifier

Verification
Engine

No

e
\lA should reach B ]

Network
Model

/
Confirmations

Enforcing dynamic correctness with heuristically maximized parallelism
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Number of Rules

QK, but...

Can the system “deadlock”?

 Proved classes of networks that never deadlock

* Experimentally rare in practice!

e Last resort: heavyweight “fallback” like consistent updates
[Reitblatt et al, SIGCOMM 2012]

Is it fast?
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Application 2: Self-Healing Phasor
Measurement Unit (PMU) Networks

Control
Center Control
Center
WAN N ‘
| PDC eee PDC

switch | ees | switch ? ' 4

—— | 2 [$— '
switch * - 7
« \ > | PMU PMUs PMUs
PDC | |
PMUs PMUs PDC
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Y Under attack

Integration of A Communication Network

? Disconnected
and A PMU Network *
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Self-Healing PMU Networks

Isolate compromised devices

“Self-heal” the network by quickly

re-establishing routes
— To restore power system observability

— Using an integer linear program model

Video Demo

Control
Center

*I PDC | e« | PDC

?

| PMU PMUs

Y Under attack

? Disconnected

|‘ PMU I?PMU ‘ 'pMUS |

PMUs
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A Hybrid Testing Platform

e o e e e e o e = = = = =
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N — —
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Power Distribution System Simulation + SDN-based Network Emulation
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A Hybrid Testing Platform

* Challenges
—Temporal fidelity in network emulation

—Synchronization between two sub-systems

* Emulation — executing “native” software to
produce behavior in wall-clock time

e Simulation — executing model software to
produce behavior in virtual time

<
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Our approach: Virtual Time

* Key idea: trade execution time with fidelity
* Time dilation factor (TDF) [Gupta, 2011]

time passing rate in the physical world

~ time passing rate in a VM's perception of time

 TDF=10
— 10 seconds in real time <=> 1 second in a time-dilated
emulated host

— a 100 Mbps link is scaled to a 1 Gbps link

D. Gupta, K. V. Vishwanath, et al. “Diecast:Testing distributed systems with an accurate scale model”. ACM Transactions on
Computer Systems,29(2):1-48, 2011
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Virtual Time System Architecture
for a Container-based Network Emulator

® ® o Freezer Command Flow
- Dilation Command Flow
<% -l
Linux | - Linux . - Linux
‘Container; Container: Container, |
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Source code: https://github.com/littlepretty/VirtualTimeForMininet
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2. Simulation/Emulation
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Future Work

* More applications
— e.g., Specification-based Intrusion Detection

* Network layer = Application layer and Cross-
layer verification

* In-house research idea =2 Real system
deployment
— [IT Microgrid

— First Cluster of Microgrids in US (12MW IIT +
10MW Bronzeville)
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Specification-based Intrusion Detection

s ) e N
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Cross-layer Verification

Power Control

Application layer

A network environment

) ) . Correct app
with desired properties

behaviors
(performance, security...)

Communication

Network layer
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