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Industrial	Control	Systems	(ICS)	
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•  Control	many	criEcal	infrastructures	
–  e.g.,	power	grids,	gas	and	oil	distribuEon	networks,	
wastewater	treatment,	transportaEon	systems	…	

•  Modern	ICSes	increasingly	adopt	Internet	technology	to	
boost	control	efficiency,	e.g.,	smart	grid	

Next	GeneraEon	of	Power	Grid		
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More	Efficient	or	More	Vulnerable?	

6	 Picture	source:	NIST	Framework	and	Roadmap	for	Smart	Grid	Interoperability	Standards	
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Cyber	Threats	in	Power	Grids	
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Picture	source:	 	1.	NaEonal	Cybersecurity	and	CommunicaEons	IntegraEon	Center	(NCCIC).	ICS-CERT	Monitor	Sep	2014	–	Feb	2015		
	2.	hRp://dailysignal.com/2016/01/13/ukraine-goes-dark-russia-aRributed-hackers-take-down-power-grid/	

•  245	incidents,	
reported	by	ICS-CERT	

•  32%	in	energy	sector	

•  80,000	residents	in	
western	Ukraine	

•  6	hours,	lost	power	
on	Dec	23,	2015		



ProtecEon	of	Industrial	Control	Systems	
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•  Commercial	of-the-shelf	products	
– e.g.,	firewalls,	anEvirus	so7ware	
– fine-grained	protecEon	at	single	device	only	

•  How	to	check	system-wide	requirements	
– Security	policy	(e.g.,	access	control)	
– Performance	requirement	(e.g.,	end-to-end	delay)	

•  How	to	safely	incorporate	exisEng	networking	
technologies	in	control	system	infrastructures?	



A	RepresentaEve	Smart	Grid	Control	Network		
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Differences	and	SimilariEes	

1
0	

Similari(es	

•  black	hole	avoidance	
•  loop	miEgaEon	
•  fast	convergence	speeds	
•  priority	control		
•  mulEple	services	on	a	single	

physical	channel	
•  …	
	

A	UElity	Control	Network	 An	Enterprise	Network	

Differences	

•  strictly	defined	forwarding	paths	
•  end-to-end	performance	

guarantee		
•  system-wide	visualizaEon	
•  real-Eme	monitoring	
•  a	deny-by-default	security	model	
•  …	



Problem	Statement	
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•  Minimize	the	gaps	with	an	SDN-enabled	
communicaEon	architecture	for	ICS	

•  Create	innovaEve	applicaEons	for	ICS	
security	and	resiliency		
– Real-Eme	network	verificaEon	
– Self-healing	network	management	
– Context-aware	intrusion	detecEon	
– Many	more	...	

ICS	–	industrial	control	system	
SDN	–	so7ware-defined	networking	

	



1
2	

Source:	Nick	McKeown,	Open	Networking	Summit	2012	
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SDN	Architecture	-	ConEnue	
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An	SDN-Enabled	Power	Grid	
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Solar	PV	
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TransiEon	to	an	SDN-Enabled	IIT	Microgrid	
•  Real-Eme	reconfiguraEon	of	power	distribuEon	assets	
•  Real-Eme	islanding	of	criEcal	loads	
•  Real-Eme	opEmizaEon	of	power	supply	resources	
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TransiEon	to	an	SDN-Enabled	
Microgrid	

•  SDN-based	ApplicaEons	
– Real-Eme	VerificaEon	
– Self-healing	PMU	

•  Hybrid	Testbed	
– SDN	emulaEon	+	Power	DistribuEon	System	
SimulaEon	
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ApplicaEon	1:	Network	VerificaEon	
–	MoEvaEon	
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•  Unauthorized	access	
•  Unavailable	criEcal	services	
•  System	performance	drop	
•  Instability	
•  Loss	of	load	
•  SynchronizaEon	Failure	

•  …	

89%	of	operators	never	sure	that	config	changes	are	
bug-free1	

82%	concerned	that	changes	would	cause	problems	
with	exisEng	funcEonality1		
		

1.  Survey	of	network	operators:	[Kim,	Reich,	Gupta,	Shahbaz,	Feamster,	Clark,	USENIX	NSDI	2015]	
2.  Pictures	borrowed	from	VeriFlow	slides	[Khurshid,	Zou,	Zhou,	Caesar,	Godfrey	NSDI	2013]	



	
	

VerificaEon	System	Design	
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VeriFlow

New rules

VeriFlow Operation

4/3/2013 Department of Computer Science, UIUC 11
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Prior	Work	
•  FlowChecker		

[Al-Shaer	et	al.,SafeConfig2010]	
•  HeaderSpaceAnalysis		

[Kazemian	et	al.,NSDI2012]	
•  Anteater		

[Mai	et	al.,SIGCOMM2011]	
•  VeriFlow		

[Khurshid	et	al.,	NSDI2012]	

Pictures	borrowed	from	VeriFlow	slides	[Khurshid,	Zou,	Zhou,	Caesar,	Godfrey	NSDI	2013]	
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Challenges	—	Timing	Uncertainty	
Network	devices	are	asynchronous	and	
distributed	in	nature		
	



Packet'

Challenges	—	Timing	Uncertainty	
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Uncertainty-aware	Modeling	
•  Naively,	represent	every	possible	network	state	O(2^n)	
•  Uncertain	graph:	represent	all	possible	combinaEons	

23	



Update	synthesis	via	verificaEon		

Enforcing	dynamic	correctness	with	heurisEcally	maximized	parallelism		
24	

A	should	reach	B	

2	 1	 3	 4	

Slide	borrowed	from	Wenxuan	Zhou,	“CCG”	NSDI	2015	



OK,	but…	
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Can	the	system	“deadlock”?	
•  Proved	classes	of	networks	that	never	deadlock	
•  Experimentally	rare	in	pracEce!	
•  Last	resort:	heavyweight	“fallback”	like	consistent	updates		
[ReitblaR	et	al,	SIGCOMM	2012]	

Is	it	fast?		
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ApplicaEon	2:	Self-Healing	Phasor	
Measurement	Unit	(PMU)	Networks	

26	

IntegraEon	of	A	CommunicaEon	Network	
and	A	PMU	Network		



Self-Healing	PMU	Networks	
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Video	Demo	
	

•  Isolate	compromised	devices	

•  “Self-heal”	the	network	by	quickly		

re-establishing	routes	

–  To	restore	power	system	observability	

–  Using	an	integer	linear	program	model	
	



A	Hybrid	TesEng	Plaeorm	
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Figure 2: DSSnet system architecture diagram. Note that the power simulator runs on a Windows machine and the network
emulator runs on a Linux machine.

to advance the simulation’s clock to the time stamp of the
current event request and to solve the power flow at that
time. Additionally, some elements of the power grid may
be modeled in the power coordinator as a function of time,
such as loads and generation. These elements are not nec-
essarily represented in the communication network, but can
still operate on DSSnet’s virtual clock.

3.1.5 Virtual Time System

Unlike simulation, the emulation clock elapses with the
real wall clock. Therefore, pausing the emulation requires
more than just stopping the execution of the emulated enti-
ties, but also pausing their clocks. Virtual time can be used
to achieve this goal [9, 19]. We choose to extend the work
of [9], in which Mininet is patched with virtual time support.
However, their motivation is di↵erent from ours.

In general, virtual time has at least two categories of ap-
plication. The first one is to slow down emulation so that
it appears to emulated entities that they have su�cient vir-
tual resources. Slowing down execution also alleviates the
problems caused by resource multiplexing. Another usage of
virtual time is for emulation-simulation synchronization. In
DSSnet, we assign every container a private clock, instead
of using the global time provided by the Linux OS. The con-
tainers now have the flexibility to slow down, speed up or
stop its own clock when synchronizing with the simulator.

However, the emulator needs to manage the consistency
across all containers. This is achieved by a centralized time-
keeper in [19], and by a two-layer consistency mechanism [9].
In practice, the emulator configuration guarantees that all

containers are running with one shared virtual clock; Simi-
larly, the container leverages the Linux process hierarchy to
guarantee that all the applications inside the container are
using the same virtual clock. The two-layer consistency ap-
proach is well-suited to this work for pausing and resuming
because:

1. All hosts should be paused or resumed when we stop
or restart the emulation.

2. All processes inside a container should be paused or
resumed when we stop or restart the emulation.

The first task is done by the network coordinator. The sec-
ond task is implemented based on the fact that processes
inside a container belong to the same process group.

3.2 Synchronization
A key challenge in DSSnet is the synchronization between

connecting the emulated communication network and the
simulated power system. The root cause is that two di↵er-
ent clock systems are used to advance experiments. Ordi-
nary virtual-machine-based network emulators use the sys-
tem clock, and a simulator often uses its own virtual clock.
This di↵erence would lead to causality errors as shown in
the following example.
In Figure 3, there are three cross-system events (E

i

), each
with a response (R

i

). E1 occurs before E2, however, E2 may
require information from R1. Since the response occurs after
the second event, the global causality is violated, and thus
reduces experiment fidelity. An example of E1 is a request

Power	DistribuEon	System	SimulaEon	+	SDN-based	Network	EmulaEon	



A	Hybrid	TesEng	Plaeorm	

29	

•  Challenges	
– Temporal	fidelity	in	network	emulaEon	
– SynchronizaEon	between	two	sub-systems	
•  EmulaEon	–	execuEng	“naEve”	so7ware	to	
produce	behavior	in	wall-clock	Eme	
•  SimulaEon	–	execuEng	model	so7ware	to	
produce	behavior	in	virtual	Eme	



Our	approach:	Virtual	Time	

•  Key	idea:	trade	execuEon	Eme	with	fidelity	
•  Time	dilaEon	factor	(TDF)	[Gupta,	2011]	

	
•  TDF	=	10	
–  10	seconds	in	real	Eme	<=>	1	second	in	a	Eme-dilated	
emulated	host	

–  a	100	Mbps	link	is	scaled	to	a	1	Gbps	link	

D.	Gupta,	K.	V.	Vishwanath,	et	al.	“Diecast:TesEng	distributed	systems	with	an	accurate	scale	model”.	ACM	TransacEons	on	
Computer	Systems,29(2):1–48,	2011	

36	



Virtual	Time	System	Architecture		
for	a	Container-based	Network	Emulator	
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Source	code:	hRps://github.com/liRlepreRy/VirtualTimeForMininet	
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Virtual	Time	is	Useful	
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1.	EmulaEon	Fidelity			
				Enhancement	
	

2.	SimulaEon/EmulaEon		
				SynchronizaEon	
	



Future	Work	

39	

•  More	applicaEons	
– e.g.,	SpecificaEon-based	Intrusion	DetecEon	

•  Network	layer	à	ApplicaEon	layer	and	Cross-
layer	verificaEon	

•  In-house	research	idea	à	Real	system	
deployment		
–  IIT	Microgrid	
– First	Cluster	of	Microgrids	in	US	(12MW	IIT	+	
10MW	Bronzeville)		



Virtualized	U(lity	Network	1	
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SpecificaEon-based	Intrusion	DetecEon	



Cross-layer	VerificaEon	
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CommunicaEon	
Network	layer	

Power	Control	
ApplicaEon	layer	

A	network	environment	
with	desired	properEes	
(performance,	security…)	
	

Correct	app	
behaviors	
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