Enforcing Customizable
Consistency Properties in
Software-Defined Networks

Wenxuan Zhou, Dong Jin, Jason Croft,
Matthew Caesar, Brighten Godfrey



Network changes

® control applications,

® changes in traffic load,

_ . A ® system upgrades,
- ,,f. - L | ®

Keeping network correct consistently over time.

-- Network Consistency



|. Correctness at every step What is Correctness?
2. Customizable properties ® firewall traversal,
3.With efficient update installation ® access control,

® balanced load,

® |oop freedom,



Problem Statement

|. Consistency at every step
2. Customizable consistency properties

3. Efficient updates installation

s it possible to efficiently ensures

customizable correctness properties
as the network evolves!
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This paper studies the question, s i passible 10 check
netwark-wide correctness in real time as the network
evolves? If we can check each change 1o forwarding be-
havior before it takes effect, we can raise alarms imme-
distely, and even preveat bugs by blocking changes that
violate impocant varisas. For example, we could pro-

cess
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However, existing techniques for checking networks
are insdequate for this purpose as they operate on
timescales of seconds to hours [10,17,19). ' Delay-
ing updates for processing can harm consistency of net-
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1. INTRODUCTION

“Nothing endures but change.”

Heraclitus
Pemiion 1o ke gl c s copiceof 48 o por of i wock B
personal or e i g o e providd tht copies a7

ot ko i o oot o comamrlel eovatege o ok oples
e this zocice and the fal ctation on the frs: page. To capy otherwie, 10
repablish,  p0s: 09 servers oe o rediritune s, eques pror pecifc

ont 1317
Copymight 2012 ACM 97814

2. Helsiic, Fisland
41001248 . 81500

Consistent
Updates =

and ietaitive

Pl faittflly
et e e spees w s s uterface. P
pramers can use the inierface o btk rotst sgplications oo
o s clible fomdwion The mechamion. whike poscbly casples.
woeld be implemented oace by experts, taned 2nd optimized, and
sod over and aver, ewch like repister allocation or gabage colles-
tion i 2 high-leve! programming languzge.

Software-defined networks. The cmergence of Softwaze De.
fined Networks (SDN) preseats # tremendous oppeetisity for -
Tkpieg revs s foc mempeg serk e, I e
logicalty-cenzalized can
.m i actwerk ety by comricg e pacet bndling mech
amism in the underlying switches. Foe cxample, the OpenFlow AP
allows 2 controler to instal rules that each specify 2 pamem that
manches on Bits in the paciet header, acsions performed oo muich-
)

i f = "
orty (o disambigusi between overapping pairas), andsimeoucs
(50 allow the switch 10 remmove stale rules) [10]. Hesce, whereas
today setwork operatoes have (at best) indirect contwol over the dis
tributed implementations of routing, access control, 2nd load bal.
ancing. SDN platforms like OpenFlow provide programmnces with
direct control over the processing of packess in the network.
Homwever, dospite the amcetusl appeal of catralized conrol,

The extent and -
gestion is womse when the petwork is busier and
) grvater tempora! dapa

e for low

trafbic in the face of failares (32).




\deally given arbitrary invariants, a sequence with minimized
overhead is produced

Controller

Stream of Updates

4 )

No loop, no black hole,
Resource isolation,

No suboptimal routing,

Magic engine




Our design: Customizable Consistency Generator

Key insight:
s, W rtcr

Controller
Stream of Updates

( Buffer of ]
pending updates ~
Network No loop/black hole,
Model ) ) Resource isolation,
Verification No suboptimal routing,
No VLAN leak,
- \ J

Confirmations




Our design: Customizable Consistency Generator

Challenges:

® Greedy algorithm may get stuck

Stream of Updates * identify the scope of cases that

CCG Buffer of guarantees no deadlock

Network P e * For other cases,a more heavyweight

Model update technique as a fallback, triggered
Verification rarely in practice
Engine

® Distributed nature of networks

Confirmations (uncertainty)

* compact uncertain forwarding graph

* verification optimization



Network Uncertainty

The “uncertainty” of an observation point tasked with instilling
updates in knowing the current network state.

May deviate network behavior away from desired properties.

&

P
Packetﬁ/ﬂﬂe 1 >%
Switch A rule2 Switch B

y
Controller
Remove rule 1 Install rule 2
(delayed)
—




Uncertainty-aware Modeling Basis:VeriFlow

==

( VeriFlow

v




Uncertainty-aware Modeling Basis:VeriFlow

VeriFlow

Generate Generate

Wil Equivalence B Forwarding Run Queries
Classes Graphs

Equivalence class: Packets Forwarding graphs:

experiencing the same ®

: : / o
forwarding actions throughout ® X o
the network. ®



Uncertainty-aware Modeling

Naively, represent every possible network state O(2”n)

Uncertain graph: represent all possible combinations

e ./& \ The model captures
j g - packets’ view of the

______ \> network, assuming
“ - j\; controller initiates changes.
uncertain

When to change “uncertain” to “certain’™?

How to verify the network under “uncertainty’?



Consistency under Uncertainty

Enforcing consistency with max parallelism heuristically

Stream of Updates

Uncertainty

-aware
M[oYa[c]

Buffer of pending
updates

Verification
Engine

Confirmations

Pass

Waypoint Properties: flows are
required to traverse a set of waypoints

® connectivity,
® waypointing,
® access control,

® service chaining, ...

Theorem: Segment independent
properties is guaranteed by the
heuristic.



Consistency under Uncertainty

Stream of Updates

Uncertainty- S
aware

Network Model N Verification

Engine

Confirmations Pass l

Even with FB triggered, CCG achieves better efficiency
than using FB alone.




System Structure

tream of

SCERLEN Byffer of
pending

- > Fallback

+1 Mechanism
. 1
Uncertainty-aware P !

Network Model

MR No loop/black hole,

Resource isolation,

No suboptimal routing,
No VLAN leak,

\
Confirmations
4




Evaluation

Can CCG verify network invariants in real time?

Can CCG achieve performance gain during network
transitions with its algorithm for maximizing the parallelism of

applying updates!?

® Segment-independent Policies

® Non-segment-independent Policies

® Emulations

® Testbed experiments



Speed Analysis

| !_ ..............................................
“ 08 !_ .............................................................................................................................
I |

% 0.6 !_ ................................................... e S .
< i | s s f f s
8 0.4 i_ .............. ..................... .................... Uncertain- | 00 e
& ' : : ~ Uncertain-1000 ===== |
- 0.2 Uncertain-10000Q e
| : _ : VeriFlow ;
0 e aaaul. oot s ol ol

I |0 100 1000 0000 100000 le+06

Microsecond

|5X less memory overhead (540MB vs. 9GB)

Simulated network: BGP RIBs and update trace from
RouteViews injected into | 72-router AS 1755 topology,
checking reachability invariant




Emulation: Segment-independent Policies

Controller-switch delay = network delay + processing delay

® |ocal (4ms)

® Wide area (100ms)

Measure: path completion time

NOX (Shortest path & load balancing)
CCG




Emulation: Segment-independent Policies
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Number of Rules

in the Network

Emulation: Non-segment-independent Policies

Traces from a enterprise network with 200+ layer-3 devices.

One day, one snapshot per hour, 24 transitions, 4ms delay.

New rules were added first, then old rules deleted.

Rules overlapped with longest prefix match, not segment-independent.
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Time

Fallbacks happened rarely.

Overhead close to Immediate Update, with no transient connectivity violations.
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Conclusion

Uncertainty problem with network control
Uncertainty-aware network model
GCC,a system that
® enforces customizable network consistency properties with
® heuristically optimized efficiency.
Ongoing work:
® Study the generality of segment independency

® Test with more data traces, and compare against the original
implementation of Dionysus

® Handle changes initiated from the network.
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