Enforcing Customizable
Consistency Properties in
Software-Defined Networks

Wenxuan Zhou, Dong Jin, Jason Croft,
Matthew Caesar, Brighten Godfrey

Network changes

® control applications,

® changes in traffic load,

_ . A ® system upgrades,
- ,,f. - L | ®

Keeping network correct consistently over time.

-- Network Consistency

|. Correctness at every step What is Correctness?
2. Customizable properties ® firewall traversal,
3.With efficient update installation ® access control,

® balanced load,

® |oop freedom,

Problem Statement

|. Consistency at every step
2. Customizable consistency properties

3. Efficient updates installation

s it possible to efficiently ensures

customizable correctness properties
as the network evolves!

Prior Work

VeriFlow: Verifying Network-Wide Invariants in Real Time

Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, P. Brighten Godfrey
University of llinois at Urbana-Champaign
{khurshil, xuanzou2, wzhou10, caesar, pbg) @illinois.edu

Abstract

Networks are complex and prone io bugs. Existing ools
that cheek astwark anafianeation floc and tha dotanla

defined n
checks £

network
Flow can
microseconds per e insertion or deletion.

1 Introduction

Packet forwarding in modern petworks is a complex pro-
ces.involving codependent foocloas runaiag on buo-

ion of all
for large
8) is use-
1 must be
- L] [] n
deleted. \ sntrollers
fields, anx approach
on a prot ork-wide
OpenFloy hese

complexity of softwase will increase. Moreover, SDN al-
lows multiple applications o even multiple users 10 pro-
gram the same physical network simultaneously, poten-
b iewpetr Lot tar hne ~tone e otpndied

software
Symbolic

Wd coatrol
an opers-
sess must
hich may

pee-
find bugs

This paper studies the question, s i passible 10 check
netwark-wide correctness in real time as the network
evolves? If we can check each change 1o forwarding be-
havior before it takes effect, we can raise alarms imme-
distely, and even preveat bugs by blocking changes that
violate impocant varisas. For example, we could pro-

cess
dreds or thousands of devices, such a5 rout
and firewalls from different vendors. As & result, a mh»
stantial amount of effoet is required 1o ensure networks'
correctness, security and fault tolerance. However, faults
in the petwork state arise commonly in practice, in-
cluding loops. suboptimal routing, black holes and ac-
cess control violations that make services unavailable or
prone 1o attacks (e.g., DDoS attscks). Software-Defined
Networking (SDN) promises to ease the developmeat of

hibitch teol policies or cause
forwarding luu-pm

However, existing techniques for checking networks
are insdequate for this purpose as they operate on
timescales of seconds to hours [10,17,19). ' Delay-
ing updates for processing can harm consistency of net-
work stste, and increase reaction time of protocols with
real-time requirements such as routing and fast failover;
and processing & continuous stream of updaes in a large

network applications through logically lized net-
work programmability via an open interface 1o the dats
plane, but bugs are likely to remain problematic since the

The average rim time of reschabibiy tess in (17] is 13 seconds,
and it takes 2 fow hundred seconds t pesfoem reachabilty

Asseater (19)

Dynamic Scheduling of Network Updates

Xin Jin* Hongq: Harry Liu*
Rat Mangjan' Ving Zhang

Ronan Gandhi Srikanth Kandula
Jennifer Rexford' Roger Wattenhofer-

Microsoft Research” Princeton University' Yale University Purdue University’ ETH Zurich®

Abstraci— We peeseat Diomyss, & syviem for fast, consisient
nctwurk wgaies i sotware-definad nctw \v\l Diorysus encodes
a5 2 graph the consistency.related dependencies among updates at
individial wiches, mad & e dyoamsicaly wchedulos fcee o
Uit based on ntime diflerences in the v sods of different
swilches. This dynamic scheduling is the key 10 its sposd: pei
updase methods are show becaese they pre.determize 2 schedle,
which does not adapt to rustime conditicns. Testbed experiments
and data<driven sirwdations show that Dionysus imgroves the me-
dian vprdale speed by S3-88% in both wide wea and aia ceser
nesworks compared so price methods.

Categories and Subject Descriptors: C2.1 (Computer-
Communication Networks]: Network Archiszcture < Design

Vi :C23[C -
WOrks]: Netwock Opees i Nonemeb ememsmmmems

Keywoeds: Software-<

1. Introduction

== Dionysus

cally e based om triggers such 2 taiberes. This stae coo.
sists o set of rules that deterenine how swilches forwand packets
A comman infengs fced s ol coallycomled memnks
i consistently 25 quickly updating the dsea plane. Comsistency
feplics tht octaln proprtie showk s be votaed g act
or updates, for instance, packets sbowskd ot loop (loop freedom)
and traffic arriving a2 link should not excesd its capacity (canges.
o freedow). Consistency requireements impose dependencies on
the ordee in which rules can be updaiod a swilches. For instance,
for coogestion reedom, & rule update that brings & new Sow 104
lizk st occur after 22 update that emoves a2 existing flow if the
lizk cannct suppoet both fiows simulzaneoesly. Not obeying updase
ordering reuirements <an lexd W isconsisiencses wch @ kops,
blackholes, aex congestion
Current methods for consistent network updates are slow be.
cause they are based on static onfering of rule updates (9, 10, 11,

96th percestile w0 the median delay 1 change a role a 2 swisch
70 Bund 1o be ovc oo 5 o 1 st 3. Futho seme
. takimg subsaniially more tGme tan sver-
. 10-100%) 1 apply an upche. Comrent methods can sl
in e face of suaggling swches.

spead of setwork sgdates i Emporant becae if determnes
the agilicy of the coatrol Joop. I the necwork is being upduted in
response 1o a failure. slower updazes imply 2 lomger period dur.

Fast ntwork updaies. Our apprcac s pemcral and can be sppiied 1
many consisicacy propertics, including all the coes that have beea
ne

nikoges i pacicaly making e 1
proach. The first is devising a compact repreern: e
Yo cndriog of et spdir, e an e spuseniully sy
such orderings. We address this challenge using 2 dependenc)
graph in which aodes cormespond % rule updates 2nd necwork 7=
sources, wich o link bandwidts and swilch roke ey Capacty
and (¢irected) adges depote dependencios amog e spdates aad
network resources. Scheduling updates in azy order, whill respect.
ing dependencies, guarantees comsisters updes.

The sexond callenge is scholuiing spalates bused on dymamc
behavior o swiiches. This poblers is NP omplese &= e groeral
case, md ‘maners woese, the dependency graph i also
have cxclen. To schedule efficiently, we deveiop ol beuristics
based on preferring critical s = svogly connecied compo-
nents in the dependency graph [14].

We instantiate our appevach ia 2 system called Dionysus and
evaluate # uning experimeis oo & adest-sized e s large-
scali sicwhations. Qur sirwskatioes arc Sasad on lopoiogy and Taf-
fic data froen two real necwocks, one wide-ares zerwork and one
data center network. We show thet Dioryzss improves the median
network update speod by S3-85%. We also show that it faster
updnes bower conpestion and packet loss by over 0%

Achieving High Utilization with Software-Driven WAN

Chi-Yao Hong (uiuC) Srikanth Kandula Ratul Mahajan Ming Zhang
Vijay Gill Mohan Nanduri Roger Wattenhofer (ETH)

and

Microsoft
Abstract— We present SWAN, 2 system that boasts the i some cases, services send traffic whepever
s-dntacenter petwocks by oeotrally controk however much they want. As a result, the petwork cyces

how mich traffic each servi

current traffic demand. But dooe si

nd vice sends and
configuring the network's data plane to m
plistical

through period
visianed for peak usage to avoid conges

posks od rmegen. Sece et b -
vork s
eder-ssbece o on gverage. Obaroe that network mage

configurations can also cause severe. . does nat have to be this way if we can exploit the char
becamen differe m v annly endates at differvet acteeation of interD)C traffic. Some interDC wevies are
tim xh
pro ble
sur u
ual
of | -
as ed
It P
o e
per As
lati ieg
60f .
hat
o =
ot
Ke o

pwer long, distances,

are unable %0 faly Jever

Property

reach end wers (5], 0 an expenve reourcs, with amor, Sl trafic.
dollars, oe it provides 876 Dot atomic s they rquine charges to multiple switches

Even if the before and after states are not congested, con

 updates if tralfic that s link = sup-

age this in- gestion can ocen ¢

westiment It DC WANs have extremely poor e& posed to carzy aher the updace arires befoms the caflc

ficiency: the average utilization of even th
40-60%. Ore culprit lack of

services that use the network. Barring coarse, st

g g it g orr

busier links is
tic limits b langer RTTs (which Jead ¥
in the application of updates). Both these conditions bold

= supposesd Lo lea

oag the

"1 some aetworks, faal

tag and V«nm

Abstractions for Network Update

Mark Reitblatt Nate Foster Jennifer Rexford Cole Schiesinger David Walker
Cornel Comell Princeton Princeton Princeton

ABSTRACT

Confipuaion changes we & comnon s o sty n
orks, leading 10 outages, performance dises
locrabilites. Even when e inital #0d 1....: mllllgun(n-m are
cornes, the update process itslf ofien sieps through stermediste
configsations -

Networks exist in 3 constant stte of flux. Operatars frequendly
madty g i, afon Bk woghe, d chungt accts con
tacks from planned maimenance. 1o affic en
pmng. 0 perching security velnezahilities., 10 migrating virtazl
machizes in 4 datacenics, Bul cven when updases are plancd well
in advance. thev are Gifficult 1o immlement correctiv. and can result

e oti . -
Pt psroried
Setween oot

o o

General Terms

Design, Languages, Theary

Keywords

Consistency, planned change, software-defined networking. Open-
Flow, network programming languages, Frenecic.

1. INTRODUCTION

“Nothing endures but change.”

Heraclitus
Pemiion 1o ke gl c s copiceof 48 o por of i wock B
personal or e i g o e providd tht copies a7

ot ko i o oot o comamrlel eovatege o ok oples
e this zocice and the fal ctation on the frs: page. To capy otherwie, 10
repablish, p0s: 09 servers oe o rediritune s, eques pror pecifc

ont 1317
Copymight 2012 ACM 97814

2. Helsiic, Fisland
41001248 . 81500

Consistent
Updates =

and ietaitive

Pl faittflly
et e e spees w s s uterface. P
pramers can use the inierface o btk rotst sgplications oo
o s clible fomdwion The mechamion. whike poscbly casples.
woeld be implemented oace by experts, taned 2nd optimized, and
sod over and aver, ewch like repister allocation or gabage colles-
tion i 2 high-leve! programming languzge.

Software-defined networks. The cmergence of Softwaze De.
fined Networks (SDN) preseats # tremendous oppeetisity for -
Tkpieg revs s foc mempeg serk e, I e
logicalty-cenzalized can
.m i actwerk ety by comricg e pacet bndling mech
amism in the underlying switches. Foe cxample, the OpenFlow AP
allows 2 controler to instal rules that each specify 2 pamem that
manches on Bits in the paciet header, acsions performed oo muich-
)

i f = "
orty (o disambigusi between overapping pairas), andsimeoucs
(50 allow the switch 10 remmove stale rules) [10]. Hesce, whereas
today setwork operatoes have (at best) indirect contwol over the dis
tributed implementations of routing, access control, 2nd load bal.
ancing. SDN platforms like OpenFlow provide programmnces with
direct control over the processing of packess in the network.
Homwever, dospite the amcetusl appeal of catralized conrol,

The extent and -
gestion is womse when the petwork is busier and
) grvater tempora! dapa

e for low

trafbic in the face of failares (32).

\deally given arbitrary invariants, a sequence with minimized
overhead is produced

Controller

Stream of Updates

4)

No loop, no black hole,
Resource isolation,

No suboptimal routing,

Magic engine

Our design: Customizable Consistency Generator

Key insight:
s, W rtcr

Controller
Stream of Updates

(Buffer of]
pending updates ~
Network No loop/black hole,
Model)) Resource isolation,
Verification No suboptimal routing,
No VLAN leak,
- \ J

Confirmations

Our design: Customizable Consistency Generator

Challenges:

® Greedy algorithm may get stuck

Stream of Updates * identify the scope of cases that

CCG Buffer of guarantees no deadlock

Network P e * For other cases,a more heavyweight

Model update technique as a fallback, triggered
Verification rarely in practice
Engine

® Distributed nature of networks

Confirmations (uncertainty)

* compact uncertain forwarding graph

* verification optimization

Network Uncertainty

The “uncertainty” of an observation point tasked with instilling
updates in knowing the current network state.

May deviate network behavior away from desired properties.

&

P
Packetﬁ/ﬂﬂe 1 >%
Switch A rule2 Switch B

y
Controller
Remove rule 1 Install rule 2
(delayed)
—

Uncertainty-aware Modeling Basis:VeriFlow

==

(VeriFlow

v

Uncertainty-aware Modeling Basis:VeriFlow

VeriFlow

Generate Generate

Wil Equivalence B Forwarding Run Queries
Classes Graphs

Equivalence class: Packets Forwarding graphs:

experiencing the same ®

: : / o
forwarding actions throughout ® X o
the network. ®

Uncertainty-aware Modeling

Naively, represent every possible network state O(2”n)

Uncertain graph: represent all possible combinations

e ./& \ The model captures
j g - packets’ view of the

______ \> network, assuming
“ - j\; controller initiates changes.
uncertain

When to change “uncertain” to “certain’™?

How to verify the network under “uncertainty’?

Consistency under Uncertainty

Enforcing consistency with max parallelism heuristically

Stream of Updates

Uncertainty

-aware
M[oYa[c]

Buffer of pending
updates

Verification
Engine

Confirmations

Pass

Waypoint Properties: flows are
required to traverse a set of waypoints

® connectivity,
® waypointing,
® access control,

® service chaining, ...

Theorem: Segment independent
properties is guaranteed by the
heuristic.

Consistency under Uncertainty

Stream of Updates

Uncertainty- S
aware

Network Model N Verification

Engine

Confirmations Pass l

Even with FB triggered, CCG achieves better efficiency
than using FB alone.

System Structure

tream of

SCERLEN Byffer of
pending

- > Fallback

+1 Mechanism
. 1
Uncertainty-aware P !

Network Model

MR No loop/black hole,

Resource isolation,

No suboptimal routing,
No VLAN leak,

\
Confirmations
4

Evaluation

Can CCG verify network invariants in real time?

Can CCG achieve performance gain during network
transitions with its algorithm for maximizing the parallelism of

applying updates!?

® Segment-independent Policies

® Non-segment-independent Policies

® Emulations

® Testbed experiments

Speed Analysis

| !_ ..
“ 08 !_ ...
I |

% 0.6 !_ ... e S .
< i | s s f f s
8 0.4 i_ Uncertain- | 00 e
& ' : : ~ Uncertain-1000 ===== |
- 0.2 Uncertain-10000Q e
| : _ : VeriFlow ;
0 e aaaul. oot s ol ol

I |0 100 1000 0000 100000 le+06

Microsecond

|5X less memory overhead (540MB vs. 9GB)

Simulated network: BGP RIBs and update trace from
RouteViews injected into | 72-router AS 1755 topology,
checking reachability invariant

Emulation: Segment-independent Policies

Controller-switch delay = network delay + processing delay

® |ocal (4ms)

® Wide area (100ms)

Measure: path completion time

NOX (Shortest path & load balancing)
CCG

Emulation: Segment-independent Policies

e N A N A e No fallback triggered
0.8 b e e s P No additional memory

b o
| : pmmmme - Bososooovese .
| | ' ~ <—— Local

0.4 :_ """""""""" 3 /R o , CCG-Waypoint
i | Dionysus
0.2 oy """"""""""" " Consistent Updates

; ; Incremental CU ====- :
o J A0 A N N WO

0 50 100 150 200 250

Fraction of trials

Millisecond

= S SR S p Optimal ====-
N B T / CCG oo
g A— A— x- CCG-waypoint
5 Dionysus
R ST Y L S Consistent Updates

‘b g ; Incremental CU ====- :
S FO NP ISR EUUUIUUTN WU EUUI U EUS

O 200 400 600 800 1000 1200 1400 1600 1800 2000

Wide area >

Fraction of trials

Millisecond

Number of Rules

in the Network

Emulation: Non-segment-independent Policies

Traces from a enterprise network with 200+ layer-3 devices.

One day, one snapshot per hour, 24 transitions, 4ms delay.

New rules were added first, then old rules deleted.

Rules overlapped with longest prefix match, not segment-independent.

25000 // // //
/N N
20000 / \, 4 Ay
15000 / S P / \6
4 Y \1.1_.: " _3{ g
10000 : Q\ \ /f’ ¢ ¢
\ / Immediate Upndate ® :
5000 \\\:ﬂk V2 COG errmsenes ® } Completion
- Consistent Updates A Time
0 // // // | |
7/22/2014 7/22/2014 7/22/2014 7/22/2014 7/23/2014 7/23/2014 7/23/2014 7/23/2014
22:00:00 22:00:02 23:00:00 23:00:02 0:00:00 0:00:02 1:00:00 1:00:02
Time

Fallbacks happened rarely.

Overhead close to Immediate Update, with no transient connectivity violations.

20

Conclusion

Uncertainty problem with network control
Uncertainty-aware network model
GCC,a system that
® enforces customizable network consistency properties with
® heuristically optimized efficiency.
Ongoing work:
® Study the generality of segment independency

® Test with more data traces, and compare against the original
implementation of Dionysus

® Handle changes initiated from the network.

21

