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General Question
For distributed control systems, how expensive is it 
to preserve privacy? How to optimize?

Navigation
◦ Routing delays vs location privacy

Smart Grid
◦ Peak demand vs schedule privacy
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In this study we look for answer to this general question: how expensive is it to preserve privacy in distributed control system.
For example, in a navigation system, knowing the individual agents’ path he plans to follow can help delay optimal routing, however releasing such information violates the privacy of individual user.
Same problem exists in smart grid where collecting the power consumption of each individual agent is helpful to reduce peak demand and increase power utility. while at the same time such information might be used to estimate the user’s schedule.





Section I:
On Differential Privacy of Distributed Control System



Distributed control
Consider a network of vehicles evolving in a shared 
environment (road congestion)

State of each agent (vehicle) 𝑥𝑥𝑖𝑖
◦ Evolve with coupled dynamics (delays)

Agents want to share state to estimate delays

Private preferences 𝑝𝑝𝑖𝑖, 
◦ initial states + sequence of waypoint

Report value 𝑧𝑧𝑖𝑖 = 𝑥𝑥𝑖𝑖 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
Dynamics of agent:

𝑧𝑧𝑖𝑖 = 𝑥𝑥𝑖𝑖 + 𝑤𝑤𝑖𝑖
𝑢𝑢𝑖𝑖 = 𝑔𝑔(𝑥𝑥𝑖𝑖 ,𝑝𝑝𝑖𝑖 , 𝑧𝑧)
𝑥𝑥𝑖𝑖+ = 𝑓𝑓 𝑥𝑥𝑖𝑖 , 𝑥𝑥,𝑢𝑢𝑖𝑖
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𝑥𝑥1 𝑥𝑥2

𝒙𝒙𝟑𝟑 𝑥𝑥4
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Some notations
𝑧𝑧𝑖𝑖 = 𝑥𝑥𝑖𝑖 + 𝑤𝑤𝑖𝑖

𝑢𝑢𝑖𝑖 = 𝑔𝑔(𝑥𝑥𝑖𝑖 ,𝑝𝑝𝑖𝑖 , 𝑧𝑧)
𝑥𝑥𝑖𝑖+ = 𝑓𝑓 𝑥𝑥𝑖𝑖 , 𝑥𝑥,𝑢𝑢𝑖𝑖

•Sensitive data set: 𝐷𝐷 = 𝑝𝑝𝑖𝑖 𝑖𝑖∈[𝑁𝑁] collects agent preference
• Two data set 𝐷𝐷,𝐷𝐷𝐷 are adjacent if they differ in one agent’s data

•Observation sequence: 𝑂𝑂 = 𝑧𝑧 𝑡𝑡 𝑡𝑡∈[𝑇𝑇] ∈ ℜ 𝑛𝑛𝑛𝑛𝑛𝑛

•Trajectory: 𝜉𝜉 = {𝑥𝑥 𝑡𝑡 }𝑡𝑡∈[𝑇𝑇],  
◦ Fully defined by a data set 𝐷𝐷 and observation 𝑂𝑂, 𝜉𝜉𝐷𝐷,𝑂𝑂
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𝜖𝜖-differential privacy

Definition: The randomized communication is ε-differentially 
private with 𝜖𝜖 > 0, if  for all adjacent datasets 𝐷𝐷 and 𝐷𝐷𝐷 for all 
subset of observations 𝑆𝑆,

Pr 𝑂𝑂𝐷𝐷 ∈ 𝑆𝑆 ≤ 𝑒𝑒𝜖𝜖 Pr[𝑂𝑂𝐷𝐷𝐷 ∈ 𝑆𝑆]

•Difference in one agent’s data doesn’t change the output distribution much

•Small 𝜖𝜖, high  privacy;  𝜖𝜖 → 0, no communication;  𝜖𝜖 → ∞, no privacy

•How to design the noise to achieve 𝜖𝜖-differential privacy?

6[Dwork2006], [Ny2014], [Huang2012]



Laplace mechanism for one-shot 
queries[Dwork06]

No dynamics involve, just exchanging initial states
◦ 𝑝𝑝𝑖𝑖 ∈ ℜ is the initial state of agent 𝑖𝑖

Laplace mechanism: 𝑧𝑧𝑖𝑖 = 𝑝𝑝𝑖𝑖 + 𝐿𝐿𝐿𝐿𝐿𝐿 1
𝜖𝜖

gives 𝜖𝜖-differential 
privacy for any 𝜖𝜖
◦ 𝐿𝐿𝐿𝐿𝐿𝐿 1

𝜖𝜖
has p.d.f. :   𝑓𝑓(𝑥𝑥) = 𝜖𝜖

2
𝑒𝑒𝜖𝜖|𝑥𝑥|

◦ ∀𝑥𝑥, 𝑥𝑥𝑥: 𝑓𝑓 𝑥𝑥
𝑓𝑓 𝑥𝑥′

≤ 𝑒𝑒𝜖𝜖 𝑥𝑥−𝑥𝑥′

◦ The average reported value is ∑𝑧𝑧𝑖𝑖 which 
gives DP with accuracy bounds

7

Presenter
Presentation Notes
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As a reminder, a Laplace noise has a pdf shown in the slides. For a larger parameter delta over epsilon, the noise is more spread out. 
With a parameter converges to 0, the pdf converges to a delta function.




When dynamics come into the picture

Definition: the sensitivity of the system is supremum 
1-norm between agent trajectories 

𝑆𝑆 𝑡𝑡 = sup
adj 𝐷𝐷,𝐷𝐷′
𝑂𝑂∈𝑂𝑂𝑂𝑂𝑂𝑂

| 𝜉𝜉𝐷𝐷,𝑂𝑂,𝑖𝑖(𝑡𝑡) − 𝜉𝜉𝐷𝐷′,𝑂𝑂,𝑖𝑖(𝑡𝑡)|1
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• Sensitivity is a property of dynamics of the network
• It can be computed [HiCoNS2014], [CAV2014]
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Sensitivity is a property of the dynamics of the system.
Actually, this notion is very similar to the discrepancy we just described for invariant verification.
In that context, we indeed compute sensitivity of trajectory to different initial states which is then used to compute reach set.
Here, the sensitivity is defined to sensitive data set D.



Laplace Mechanism for 
dynamical systems
Theorem: The following distributed control system is 𝜖𝜖-
differentially private:
• at each time 𝑡𝑡, each agent adds an vector of independent 

Laplace noise 𝐿𝐿𝐿𝐿𝐿𝐿(𝑆𝑆 𝑡𝑡 𝑇𝑇
𝜖𝜖

) to its actual state:

𝑧𝑧 𝑡𝑡 = 𝑥𝑥𝑖𝑖 𝑡𝑡 + 𝐿𝐿𝐿𝐿𝐿𝐿(
𝑆𝑆 𝑡𝑡 𝑇𝑇
𝜖𝜖

)
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• Larger time horizon, higher privacy level, larger 
sensitivity  ⇒ more noise ⇒ worse accuracy

Presenter
Presentation Notes
Adding this amount of noise gives epsilon differential privacy for any epsilon

How much adding noise is deteriorating the performance of the system 




Cost of Privacy

Average Cost: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝 = 1
N
∑𝑡𝑡=0𝑇𝑇 ∑𝑖𝑖 𝑥𝑥𝑖𝑖 𝑡𝑡 − 𝑝𝑝𝑖𝑖(𝑡𝑡) 2

Baseline cost 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝: the cost when 𝑧𝑧𝑖𝑖 𝑡𝑡 = 𝑥𝑥𝑖𝑖(𝑡𝑡)
• No noise

The Cost of Privacy of a DP mechanism 𝑀𝑀 is:
𝑪𝑪𝑪𝑪𝑪𝑪 = sup

𝑝𝑝
𝐄𝐄[𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑝𝑝 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑝𝑝]
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-We define the average cost function of the system in quadratic form.  It is the averaged sum of squared distance of each agent’s trajectory to its desired trajectory. 
Clearly, if we fix the system’s dynamics and the report strategy of agents, this cost of the system is a function of the preferences of agents.

We consider M’ to be a baseline Mechanism such that each agent reports its accurate states.
M’ may achieves minimized cost with sacrifice of agents’ privacy.

Then we define Cost of Privacy of a mechanism M as the worst case difference in cost between M and M’ over all possible choices of agents’ preferences.





CoP for linear dynamical system

For stable dynamics: CoP ∼ 𝑂𝑂( 𝑇𝑇3

𝑁𝑁2𝜖𝜖2
), 

otherwise exponential in 𝑇𝑇
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With this mechanism, we derive the following level of Cost of privacy.
The Cost of Privacy scales cubically on the time bound T and inversely on the square of the privacy parameter epsilon times the number of agent N.


-If we want to preserve privacy for a longer horizon, the cost seems grow quickly.
But for many distributed control systems, agents comes and goes. E.g. in the navigation system, each agent is deleted from the system if they arrived their destination. 
-The cost of privacy is low for systems with large number of agents

-The cost of privacy doesn’t  scale well with horizon.  The reason is partially caused by that our definition protect the whole desired trajectory. If we relax this definition, e.g. in the navigation problem each agents follows several waypoints or the extreme case only want to protect their destination, we get better cost of privacy. In this case, the CoP is proportional to the cubic of the average number of waypoints of each agents.





Summary

Extend the notion of differential privacy to dynamical 
systems

Generalize Laplace mechanism to dynamical observation 
using  sensitivity of trajectories 

For stable dynamics  CoP ∼ 𝑂𝑂( 𝑇𝑇3

𝑁𝑁2𝜖𝜖2
), otherwise, exponential 

in 𝑇𝑇
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Section II:
Entropy-minimization of Differential Privacy 



Feedback control system

𝑧𝑧 = 𝑥𝑥 + 𝑤𝑤
𝑥𝑥+ = 𝑓𝑓 𝑥𝑥, 𝑧𝑧

•Feedback control of agent:
• Sensitive data: 𝑥𝑥0 initial state of agent

• Protecting the initial state is equivalent to protecting the 
whole trajectory

• Observation sequence: 𝑂𝑂 = 𝑧𝑧 𝑡𝑡 𝑡𝑡∈[𝑇𝑇]

•Question: how much information is lost by adding noise? 
How to minimize the information loss?
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entropy is the measure of the amount of information that is missing before reception



Estimation & Entropy
Definition. An estimate of the agent’s initial state is the 
expectation of the initial state given the history of the 
agents’ report

�𝑥𝑥𝑡𝑡 = 𝐄𝐄[𝑥𝑥0|𝑧𝑧0, 𝑧𝑧1, … , 𝑧𝑧𝑡𝑡]

Definition. The entropy of a random variable 𝑥𝑥 with 
probability distribution function 𝑓𝑓(𝑥𝑥) is defined as

𝐻𝐻 𝑥𝑥 = −∫ 𝑓𝑓 𝑥𝑥 ln 𝑥𝑥 𝑑𝑑𝑑𝑑
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Entropy-minimization problem
For minimizing the amount of information loss for achieving
differential privacy, we design the noise 𝑤𝑤 to be added :

Minimize 𝐻𝐻( �𝑥𝑥𝑡𝑡)

Subject to: ∀𝑎𝑎, 𝑏𝑏: P �𝑥𝑥𝑡𝑡 = 𝑎𝑎 ≤ 𝑒𝑒𝜖𝜖 𝑎𝑎−𝑏𝑏 P[�𝑥𝑥𝑡𝑡 = 𝑏𝑏]
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Result for one-shot case

The estimate �𝑥𝑥 ∈ ℜ𝑛𝑛 is computed by the first
observation 𝑧𝑧 ∈ ℜ𝑛𝑛, no dynamics is involved.

Theorem: The lower-bound of estimate entropy is
𝑛𝑛 − 𝑛𝑛 ln 𝜖𝜖

2
, which is achieved by adding Laplace

noise 𝑤𝑤 ∼ 𝐿𝐿𝐿𝐿𝐿𝐿(1/𝜖𝜖)

𝑧𝑧 = 𝑥𝑥 + 𝑤𝑤
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Sketch of proof [CDC14]
• Let 𝑝𝑝(𝑥𝑥, 𝑧𝑧) be the joint distribution of initial state 𝑥𝑥 and
report 𝑧𝑧, we find a symmetric property

•Claim 1: for any 𝑥𝑥, 𝑝𝑝(𝑥𝑥, 𝑧𝑧 − 𝑥𝑥) is even
• Since the noise to add is 𝑛𝑛 = 𝑧𝑧 − 𝑥𝑥, the noise is mean-zero

•Claim 2: for any 𝑐𝑐, 𝑝𝑝 𝑥𝑥, 𝑧𝑧 = 𝑝𝑝(2𝑐𝑐 − 𝑥𝑥,2𝑐𝑐 − 𝑧𝑧)
• The noise added is independent of the state

•We can define 𝑓𝑓 𝑤𝑤 = 𝑓𝑓 𝑧𝑧 − 𝑥𝑥 = 𝑝𝑝(𝑥𝑥, 𝑧𝑧)
•Claim 3: 𝑓𝑓(𝑤𝑤) is non-decreasing
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Extension with dynamics

The estimate �𝑥𝑥𝑡𝑡 = E[𝑥𝑥0|𝑧𝑧0, 𝑧𝑧1, … , 𝑧𝑧𝑡𝑡] is computed by
the first 𝑡𝑡 observation 𝑧𝑧𝑠𝑠 𝑠𝑠∈[𝑇𝑇]

•Theorem: The lower-bound of estimate entropy is 
still 𝑛𝑛 − 𝑛𝑛 ln 𝜖𝜖

2
, which is achieved by a Laplace 

mechanism.

𝑧𝑧 = 𝑥𝑥 + 𝑤𝑤
𝑥𝑥+ = 𝑓𝑓 𝑥𝑥, 𝑧𝑧
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Optimal Laplace mechanism

•The first noise to add is the same as the one-shot 
case: 

𝑤𝑤0 ∼ 𝐿𝐿𝐿𝐿𝐿𝐿(1/𝜖𝜖)
•In the following round 𝑡𝑡 > 0, the noise to be added 
is by evolving the initial noise with the dynamics:

𝑤𝑤𝑡𝑡 = 𝜉𝜉(𝑤𝑤0, 𝑡𝑡)

𝑧𝑧 = 𝑥𝑥 + 𝑛𝑛
𝑥𝑥+ = 𝑓𝑓 𝑥𝑥, 𝑧𝑧
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Summary

•Formulate a general estimation problem for which we want 
to minimize the entropy of estimate

•Prove a lower bound of estimation entropy 𝑛𝑛 − 𝑛𝑛 ln 𝜖𝜖
2

•The lower bound is achieved by Laplace mechanism

21

Presenter
Presentation Notes
To conclude this talk.



Section III:
Differential Privacy of Distributed Optimization



Architecture

Constraints 𝑔𝑔1 𝑥𝑥 , … ,𝑔𝑔𝑚𝑚(𝑥𝑥)

Agent 1
𝑓𝑓1(𝑥𝑥1)

Agent n
𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛)

…
𝜇𝜇𝑥𝑥𝑛𝑛𝑥𝑥1𝜇𝜇

• Local objective functions 

• Global constraints

• Communication via the cloud

How to keep objective functions 
differentially private in communication?

Presenter
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Algorithm

𝑥𝑥𝑖𝑖 ← Π𝑋𝑋𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝛾𝛾𝑡𝑡
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝜇𝜇𝑇𝑇
𝜕𝜕𝑔𝑔
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝛼𝛼𝑡𝑡𝑥𝑥𝑖𝑖

𝜇𝜇 ← Π𝑀𝑀 𝜇𝜇 + 𝛾𝛾𝑡𝑡 𝑔𝑔 𝑥𝑥 − 𝛼𝛼𝑡𝑡𝜇𝜇
𝜇𝜇 ← 𝜇𝜇 + 𝑣𝑣(𝑡𝑡)

Constraints 𝑔𝑔1 𝑥𝑥 , … ,𝑔𝑔𝑚𝑚(𝑥𝑥)

Agent 1
𝑓𝑓1(𝑥𝑥1)

Agent n
𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛)

…
𝑥𝑥𝑛𝑛𝑥𝑥1𝜇𝜇 + 𝑣𝑣(𝑡𝑡)

𝛾𝛾𝑡𝑡 = 𝛾𝛾1𝑡𝑡−𝑐𝑐1
𝛼𝛼𝑡𝑡= 𝛼𝛼1𝑡𝑡−𝑐𝑐2

𝑐𝑐1 > 𝑐𝑐2, 𝑐𝑐1 + 𝑐𝑐2 < 1

For 𝑣𝑣 𝑡𝑡 = 0, the algorithm 
converges to optima.

𝜇𝜇 + 𝑣𝑣(𝑡𝑡)



Assumptions

• Linear objective functions 𝑓𝑓𝑖𝑖 𝑥𝑥𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖

• Lipschitz Constraints 
𝜕𝜕𝑔𝑔𝑗𝑗
𝜕𝜕𝑥𝑥𝑘𝑘

≤ 𝑙𝑙𝑗𝑗,𝑘𝑘

• Completely correlated noise 𝑣𝑣(𝑡𝑡)

Constraints 𝑔𝑔1 𝑥𝑥 , … ,𝑔𝑔𝑚𝑚(𝑥𝑥)

Agent 1
𝑓𝑓1(𝑥𝑥1)

Agent n
𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛)

…
𝑥𝑥𝑛𝑛𝑥𝑥1𝜇𝜇 + 𝑣𝑣(𝑡𝑡) 𝜇𝜇 + 𝑣𝑣(𝑡𝑡)
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Privacy
Two sensitive data 𝐷𝐷 = 𝑎𝑎1, … ,𝑎𝑎𝑛𝑛 and 𝐷𝐷′ =
𝑎𝑎1′, … ,𝑎𝑎𝑛𝑛′ are adjacent if they differ only in 

the 𝑖𝑖th element. The distance between them 
is 𝐷𝐷 − 𝐷𝐷′ = 𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖′ .

The algorithm is 𝜀𝜀-differentially private if 
given initial state 𝑥𝑥 0 ,𝜇𝜇(0), the sequence of 
public multiplier generated by two adjacent 
sensitive data satisfies

𝑃𝑃𝑃𝑃 𝜇𝜇𝐷𝐷
𝑥𝑥 0 ,𝜇𝜇(0) ∈ 𝑂𝑂

≤ 𝑒𝑒𝜀𝜀 𝐷𝐷−𝐷𝐷′ 𝑃𝑃𝑃𝑃 𝜇𝜇𝐷𝐷′
𝑥𝑥 0 ,𝜇𝜇(0) ∈ 𝑂𝑂



Accuracy

𝑥𝑥𝑖𝑖 ← Π𝑋𝑋𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝛾𝛾𝑡𝑡
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝜇𝜇𝑇𝑇
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝛼𝛼𝑡𝑡𝑥𝑥𝑖𝑖

𝜇𝜇 ← Π𝑀𝑀 𝜇𝜇 + 𝛾𝛾𝑡𝑡 𝑔𝑔 𝑥𝑥 − 𝛼𝛼𝑡𝑡𝜇𝜇
𝜇𝜇 ← 𝜇𝜇 + 𝑣𝑣(𝑡𝑡)

The loss of accuracy is defined by
Λ𝐷𝐷(𝑇𝑇) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥 0 ∈𝑋𝑋,𝜇𝜇(0)∈𝑀𝑀 𝑉𝑉𝑉𝑉𝑉𝑉 𝜇𝜇

𝐷𝐷,𝑣𝑣 𝑇𝑇
𝑥𝑥 0 ,𝜇𝜇 0 𝑇𝑇 − 𝜇𝜇𝐷𝐷,0

𝑥𝑥 0 ,𝜇𝜇 0 𝑇𝑇



Sensitivity
Sensitivity: influence of perturbing the sensitive data on observation

For temporary perturbation on 𝑎𝑎(𝑠𝑠), the noise should be

Δ𝑠𝑠(𝑡𝑡) = �
0, 1 ≤ 𝑡𝑡 ≤ 𝑠𝑠
𝛾𝛾𝑠𝑠𝛾𝛾𝑠𝑠+1𝑙𝑙, 𝑡𝑡 = 𝑠𝑠 + 1
𝛾𝛾𝑠𝑠𝛾𝛾𝑡𝑡Π𝑘𝑘=𝑠𝑠𝑡𝑡−1 1 − 𝛼𝛼𝑘𝑘𝛾𝛾𝑘𝑘 𝑙𝑙, 𝑡𝑡 ≥ 𝑠𝑠 + 2



Noise-adding Mechanism

Mechanism: Add noise

𝑣𝑣 𝑡𝑡 =
0, 𝑡𝑡 = 1
𝛾𝛾1𝛾𝛾2𝑙𝑙𝑤𝑤, 𝑡𝑡 = 2
𝛾𝛾𝑡𝑡 𝛾𝛾𝑡𝑡−1 + Σ𝑠𝑠=1𝑡𝑡−1𝛾𝛾𝑠𝑠Π𝑘𝑘=𝑠𝑠+1𝑡𝑡−1 1 − 𝛼𝛼𝑘𝑘𝛾𝛾𝑘𝑘 𝑙𝑙𝑙𝑙, 𝑡𝑡 ≥ 3

𝑤𝑤~𝐿𝐿𝐿𝐿𝐿𝐿(
1
𝜀𝜀)

Asymptotics

𝑣𝑣 𝑡𝑡 ≼
𝛾𝛾1𝑙𝑙𝑙𝑙𝑡𝑡− 𝑐𝑐1−𝑐𝑐2

𝛼𝛼1
,



Trade-off

The loss of accuracy is bounded asymptotically by

Λ𝐷𝐷 𝑇𝑇 ≤
2𝑇𝑇2𝑐𝑐2𝑙𝑙
𝛼𝛼12𝜀𝜀2

higher privacy level ↔ smaller 𝜀𝜀 ↔ larger Λ𝐷𝐷 ↔ larger error



Simulations

The dual trajectory 𝜇𝜇
𝐷𝐷,𝑣𝑣 𝑇𝑇
𝑥𝑥 0 ,𝜇𝜇 0 𝑇𝑇 and 𝜇𝜇𝐷𝐷,0

𝑥𝑥 0 ,𝜇𝜇 0 𝑇𝑇 𝜇𝜇
𝐷𝐷,𝑣𝑣 𝑇𝑇
𝑥𝑥 0 ,𝜇𝜇 0 𝑇𝑇 − 𝜇𝜇𝐷𝐷,0

𝑥𝑥 0 ,𝜇𝜇 0 𝑇𝑇

Λ𝐷𝐷 𝑇𝑇



Summary

Privacy in distributed optimization

Trade-off between privacy and accuracy
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