Sensitivity Analysis of Probabilistic Workflow Models with Security Constraints

John C. Mace, Nipun Thekkummal, Aad van Moorsel School of Computing Science, Newcastle University, UK john.mace@ncl.ac.uk, nipun.thekkummal@ncl.ac.uk, aad.vanmoorsel@ncl.ac.uk

BACKGROUND

- Workflow security constraints restrict which tasks a user can perform each time a workflow is executed
- Completing a workflow consists of assigning each task to an available user whilst respecting all security constraints
- Security constraints can make the availability of some users more critical than others for workflow completion
- A user with a junior role may be more critical to workflow completion and arguably have more 'power' than a user with a senior role
- Malicious users could use their power to obstruct workflow completion by restricting their availability. This may necessitate security constraint overrides to complete a workflow
- The maximum probability of workflow completion by users who may become unavailable is known as *workflow resiliency*¹
- We want to identify the power of users by measuring how changes in

SENSITIVITY ANALYSIS USING DIFFERENTIAL METHOD

- Sensitivity analysis determines how different values of a model's input parameters impact the model's output value
- Differential analysis is conducted by changing one parameter at a time whilst all other parameters are assigned their mean value
- The rate of change of output to input values is calculated for the entire range of inputs and summed to get the sensitivity coefficient

Sensitivity coefficient =
$$\sum \left(\frac{\Delta y}{\Delta x} \times \frac{x}{y}\right)$$

- The sensitivity of each user's availability is a good indicator of their power over the resiliency of a workflow
- A large change in a user's availability may have little or no effect on resiliency whilst a small change may have a large effect
- Security constraints can be reconfigured to redistribute and align user

user availability impact the resiliency of a workflow

SECURITY CONSTRAINED WORKFLOWS

- We consider workflows with:
 - Authorization constraints ~ which individual tasks can be assigned to which users
 - Separation of duty constraints ~ which tasks cannot be assigned to the same user in a single execution
 - Binding of duty constraints ~ which tasks which must be assigned to the same user in a single execution

 $\begin{bmatrix} u_1, u_2 \end{bmatrix} \begin{bmatrix} u_2, u_3 \end{bmatrix} \begin{bmatrix} u_1, u_3 \end{bmatrix}$ $\underbrace{t_1}_{\checkmark} \underbrace{\neq}_{\checkmark} \underbrace{t_2}_{\checkmark} \underbrace{\leftarrow}_{\checkmark} \underbrace{t_3}$

Workflow example

Workflow security constraints

- Each user is authorized to perform two tasks, e.g. u₂ can be assigned to tasks t₁ and t₂
- Two separation of duty constraints between t_1 and t_2 , and t_2 and t_3
- User u_2 cannot be assigned to t_1 and t_2 in the same workflow execution

WORKFLOW RESILIENCY

power with the seniority of their role

SENSITIVITY ANALYSIS IN PRISM

 We have implemented sensitivity analysis functionality into the probabilistic model checker PRISM

- **GUI mode** PRISM generates a plot for each parameter where the slope of the plot signifies the parameter's sensitivity
- Command Line mode PRISM ranks input parameters by their sensitivity using the sensitivity coefficients
- Workflow resiliency can be computed by modelling an abstracted workflow task assignment process²
- The probability of user u_i being available for authorized task t_j is an input parameter P_{ij} for a workflow model³
- Model properties are verified using the probabilistic model checker PRISM⁴
- We ask PRISM to verify the maximum probability of reaching a model state which indicates workflow completion

Input parameter sensitivity for example workflow model		
1. P ₁₁ :0.246	2. P ₂₁ :0.087	3. P ₃₂ :0.167
1. P ₁₃ :0.246	2. P ₃₃ :0.087	3. P ₂₂ :0.167

• User u_1 has most power over the resiliency of the workflow example, distributed equally across both tasks t_1 and t_3

REFERENCES

- 1. J. C. Mace, C. Morisset, A. van Moorsel "Quantitative Workflow Resiliency", ESORICS, 2014
- 2. J. C. Mace, C. Morisset, A. van Moorsel "Impact of Policy Design on Workflow Resiliency Computation Time", *QEST*, 2015
- 3. J. C. Mace, C. Morisset, A. van Moorsel "Modelling User Availability in Workflow Resiliency Analysis", *HotSoS*, 2015
- 4. M. Kwiatkowska, G. Norman, D. Parker "PRISM 4.0: Verification of Probabilistic Realtime Systems", *CAV*, 2011

This material is based upon work supported by the Maryland Procurement Office under Contract No. H98230-14-C-0141

SCIENCE OF SECURITY VIRTUAL ORGANIZATION Funded by the National Security Agency.

