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General Question

Trade-off between ”privacy” and ”accuracy”: a common strategy
to protect some data private is to randomize it, but this
undermines the accuracy of the data.
Example1:

Plant P Mechanism M

Noise N(t)

X (t)

Controller C

Adversary A

U(t) V (t) Z (t)

+

Y (t)

Figure: Block Diagram for ε-Differentially Private Discrete-time Linear
Feedback System

1Huang et al., HiCoNS 14.



Preliminaries

In this work, we use the concept of ε-differential privacy as a
measure of privacy. It originates from the study of
privacy-preserving queries of datasets 2 and later extends to
dynamic systems.

Definition
The mechanism M is ε-differentially private if the inequality

P [M(x1) ⊆ O] ≤ exp (ε‖x1 − x2‖1)P [M(x2) ⊆ O] (1)

holds for any inputs x1, x2 and a set of possible outputs O, where
‖x‖1 =

∑n
i=1 |xi |.

2C. Dwork, 2006.



Preliminaries

Accuracy is measured by Shannon entropy. For a random variable
X on Rn with probability distribution function f (x),

H (X ) = −
∫
Rn

f (x) ln(x)dx (2)



One-shot Query

Mechanism M

Noise N(X )

Input X Output Y

Figure: Block Diagram for a ε-Differentially Private Mechanism

Conditions:

I X ,Y ∈ (Rn, ‖ · ‖1)

I the joint p.d.f. p(x , y) is absolute continuous;

I the noise N(X ) is zero-mean;

I the accuracy is measured by H (M) = supX H (Y ).



Theorem
For an ε-differentially private mechanism M with input set
(Rn, ‖ · ‖1), we have H (M) ≥ n − n ln(ε/2) and the minimum is
achieved by p(x , y) = ( ε2)n exp(−ε‖y − x‖1) =

∏n
i=1

(
ε
2e
−ε|yi−xi |

)
.

Trade-off: Privacy↑ =⇒ ε ↓ =⇒ H (M) ↑ =⇒ Accuracy ↓



Control Systems

Plant P Mechanism M

Noise N(t)

X (t)

Controller C

Adversary A

U(t) V (t) Z (t)

+

Y (t)

Conditions:

I X (t),Y (t),Z (t),U(t),V (t) ∈ (Rn, ‖ · ‖1)

I zero input: U(t) = 0

I unit gain feedback: V (t) = Y (t) = Z (t)

I dynamics: X (t + 1) = AX (t) + BV (t).



Control Systems

Plant P Mechanism M

Noise N(t)

X (t)

Controller C

Adversary A

U(t) V (t) Z (t)

+

Y (t)

The adversary A only has access to the randomized outputs
{Z (i) | i ∈ [t]}. Since

X (t) = AtX (0) +
t−1∑
i=0

At−i−1BZ (i), (3)

protecting the ε-differential privacy of the initial system state is
equivalent to protecting the ε-differential privacy of the whole
trajectory.



Control Systems

The adversary A estimates the initial system state from the past
history of randomized outputs {Z (i) | i ∈ [t]} by

X̃ (t) = E [X (0) | Z (0),Z (1), . . . ,Z (t)] , (4)

The accuracy of the output of the mechanism M at time t ∈ N is
measured by

H (M, t) = H
(
X̃ (t)

)
. (5)



Control Systems

The mechanism L is ε-differentially private up to time t ∈ N, if for
any pair of initial states x1, x2 ∈ Rn, and output history
{z(i) | i ∈ [t]},

P [Z (1) = z(1), . . . ,Z (t) = z(t) | X (0) = x1]

P [Z (1) = z(1), . . . ,Z (t) = z(t) | X (0) = x2]

≤ exp (ε‖x1 − x2‖) .
(6)

By Bayes formula, (6) is equivalent to

h̃t(x1) ≤ exp (ε‖x1 − x2‖) h̃t(x2). (7)

where h̃t is the probability density function of X̃ (t).



Control Systems

Theorem
If a mechanism is ε-differentially private up to time t ≥ 0, then

H (L, i) ≥ n − n ln(
ε

2
) (8)

for i ∈ 1, . . . , t. The equality holds when N(0) ∼ Lap(1/ε), and for
t ≥ 1, N(t) = AN(t − 1). In this case

H (L, 1) = H (L, 2) = . . . = H (L, t) = n − n ln(
ε

2
). (9)



Proof of Theorem

Assume X ,Y ∈ R.

Problem

Minimize: H (M)

subject to: P [M(x1) ⊆ O] ≤ exp (ε‖x1 − x2‖1)P [M(x2) ⊆ O]



Proof Step 1
Claim 1: for fixed x , p(x , y − x) is even.

H+
1 (M) = sup

x∈R

∫
[x ,∞)

−p(x , y) ln p(x , y)dy , (10)

H−1 (M) = sup
x∈R

∫
(−∞,x]

−p(x , y) ln p(x , y)dy . (11)

q(x , y) =


p(x , y)

if y > x ,H+
1 (M) ≤ H−1 (M)

or y < x ,H+
1 (M) > H−1 (M) ,

p(x , 2x − y)
if y > x ,H+

1 (M) > H−1 (M)

or y < x ,H+
1 (M) ≤ H−1 (M) .

(12)

H (N ) = 2 min{H+
1 (M) ,H−1 (M)} ≤ H+

1 (M) + H−1 (M) = H (M) ,
(13)



Proof Step 1
Claim 2: for any x , p(x , y) = p(2a− x , 2a− y).

H+ (M) = sup
x>a

∫
R
−p(x , y) ln p(x , y)dy , (14)

H− (M) = sup
x≤a

∫
R
−p(x , y) ln p(x , y)dy . (15)

If H+ (M) ≤ H− (M), then define

q(x , y) =

{
p(x , y), x > a,

p(2a− x , 2a− y), x ≤ a,
(16)

otherwise, define

q(x , y) =

{
p(2a− x , 2a− y), x > a,

p(x , y), x ≤ a.
(17)

H (N ) = min{H+ (M) ,H− (M)} ≤ max{H+ (M) ,H− (M)} = H (M) ,
(18)



Proof Step 1

Claim 3: p(x , y) = f (y − x).
Let q(x , y) = p(x , y − x). By Claim 2, q(x , y) = q(2a− x ,−y).
By Claim 1, q(2a− x ,−y) = q(2a− x , y).
Now the problem becomes,

Problem

Minimize: H(f ) = −
∫
[0,∞)

f (x) ln f (x)dx ,

subject to: f (x) is absolutely continuous,

f (x) ≥ 0,

|f ′(x)| ≤ εf (x) a.e.,∫
[0,∞)

f (x)dx =
1

2
.



Proof Step 2

Claim 4: f (x) is decreasing.
Let x∗ be a local minimum on (0, 1). Then there exists x∗ ∈ [a, b]
such that f (a) = f (b) > f (x) for x ∈ (a, b). Let

d = 1
f (a)

∫ b
a f (x)dx and

h(x) =


f (x), x ∈ [0, a],

f (b), x ∈ [a, a + d ],

f (x + b − a− d), x ∈ [a + d ,∞].

(19)

Then H(h) < H(f ).



Proof Step 2

Let F (x) =
∫∞
x f (y)dy .

F (x) ≥
∫ ∞
x

|f ′(x)|
ε

dy ≥ 1

ε
|
∫ ∞
x

f ′(x)dy |

=
1

ε
|f (∞)− f (x)| =

f (x)

ε

(20)

In particular, f (0) ≥ εF (0) = ε
2 .



Proof Step 2

H(f ) = −
∫ ∞
0

f (x) ln f (x)dx

= −
∫ ∞
0

f (x)

(
ln f (0) +

∫ x

0

f ′(y)

f (y)
dy

)
dx

= −1

2
ln f (0)−

∫ ∞
0

f ′(y)

f (y)

(∫ ∞
x

f (x)dx

)
dy

= −1

2
ln f (0)−

∫ ∞
0

f ′(y)F (y)

f (y)
dy

≥ −1

2
ln f (0)−

∫ ∞
0

f ′(y)

ε
dy

=
f (0)

ε
− 1

2
ln f (0) ≥ 1

2
− ln(

ε

2
),

(21)

The minimum is achieved by

f (x) =
ε

2
exp(−εx). (22)



Thanks!


