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cyber-physical systems

* engineering systems that bring together
sensing, computation, and control

 autonomous, complex, and safety-critical -

* many application areas: driving assist systems,
driverless cars, embedded medical devices,
surveillance drones :



Crash involving self-driving Google car
injures three employees

) Driverless car hit while stationary in ImH by human driver travelling at 17mph
. . . . .
f‘ in another vehicle, resulting in the first self-driving car injuries
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Drone operator
|4 speaks out

“How can we design cyber-physical systems people can
bet their lives on?” --- Jeannette Wing



foundational approach

« develop sound and relative complete algorithms for
analysis and synthesis
— powertrain control in vehicles
— motion controlin drones
~* theory for optimality in distributed control while
preserving privacy
— distributed optimization
— traffic networks

e robust control, formal methods, program analysis,
and distributed systems theory



system design & properties

plant
dynamics

controller
software

hybrid systems models:
mathematical model of CPS

differential equations & programs
discrete or continuous time

uncertainties: model parameters,
disturbances, scheduling

invariance and safety: “drone maintains safe
separation to objects”

stability, disturbance attenuation: “under
sensor failures/attacks, air-fuel ratio
maintained in required range”

sensitivity: “individuals in a distributed control
system maintain differential privacy ?”
controllability: “does there exist a path for an

attacker to make a power system unstable
while avoiding detection ?”



outline

e control synthesis
e privacy in cyber-physical systems
* challenge problems in verification



CONTROLLER SYNTHESIS WITH
ADVERSARY



control system with quantized sensing

- plant X

Xepr = f (Xe, Ue) a
u sensor/
G quantizer 9
u = g(c) Cy Q

controller C

measurements over finite bandwidth channel:
guantized and sampled

multi-point attack surface

goal: synthesize controller with provable guarantees
(certificates)



synthesis problem as search )

/

= model, ' synthesis controller g
requirements . algorithm
£ i

certificate

given a system model, quantization, init, safe and goal,

find control g(.) such that all behaviors are safe and
reach goal

* vyes (controller strategy function g)

* no (impossibility certificate “no controller exists”)




inductive synthesis rules [Huang et al. CDC 15]

Findig:C — U,V:C > N, k € N such that

* (control invariant)
V(iinit) =k A6 € pesl€, g) = 1 (C)=V(C')

e (safe) V(C) <k = C C safe
o;(goal} C Segail — V(| —¢lk

* (progress)
C Cinv\geal N (' postk(C q) =V > rees
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soundness and relative completeness
of synthesis algorithm

 Robustness: Given controller C and ranking function templates
R, the problem M is robust if there existse > 0 :

— existsg € C,V € R such that for any problem M’ that is e-close to M,
the g,V solvesthe synthesis problem for M” with some k, OR

— for none of the problems M’ that are e-close to M, have solutions to
the synthesis problem withany g € C,V € R

 Theorem. If the synthesis problem M is (C,R)-robust, then
there exists a sufficiently accurate computation of post(C, g)
to (a) either find control g and proofV or (b) give a proof that
there exists no such controllerin C, R.

12



application: path planning

implemented using CVC4 SMT
solver

nonlinear vehicle navigation
with noise and obstacles

~C: regionsin x-y plane
V:C =N

768 cells, 3072 real-valued
variables, booleans, solved in
less than 10 minutes

Light (under) and over (dark)
approximation of post



linear dynamics with L2 attack budget
Redch(xg,u, ty=febdas x— E(xy, v, at))

L(xg,u,t) is called adversarial leverage iff
Reach(xgy, u, Adv,t) = Reach(xg, u, 0,t) D L(xq,u,t)

For linear dynamics and L2-budget
L(xe, uit) =l W 9t = bl

where Wt — Zg;% At—S—lcCT (AT)t—s—l

Can be computed exactly and independently of x
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adversarial leverage

For each t < H, generate safe; and goal, such that
o safe; @ L(t) = safe

* goal; @ L(t) = goal

saf e, goal; computed by conic programming

Check 3u € Ctrl : Vt,xy € Init, Reach(Init,u,0,t) € safe;
and Reach(Init,u,0,T) € Goal

Exists u that is adversary-free solutionu
Reach(xy,u,0,t) € Saf e; and Reach(xy,u,0,t) € Safe; Iff
u solves the control synthesis problem with adversary
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planning under uncertainty

Autonomous helicopter (16D, 4 inputs)
xt+1 — Atxt - Btut - Ctat

Adv:Y|a;|* < b: intrusion budget
constraints

Ctr:).c;u; < k: actuation constraints

Init: Additive sensor attacks



e g
control strategies i
4,160 Unsat 2.79

80 44 4320 3844  Sat 35.22
Find b.,-;; that makes synthesis ey Sy SRV IETY STy R - 532.5

impossible 36 6, 72 402 Sat 24.5

24 6, 96 338 Sat 60.6

Vulnerability classification of : 576 158.8
initial states

Attack synthesis: function:
R™ —» Adv that reaches




summary and outlook

 we have developed a new class of synthesis
algorithms for control systems under attacks with
budget-constrained adversaries
— algorithms can also give impossibility certificates
— applicationsin motion planningunder sensor attacks

e ongoing: switching based synthesis of attacks on that
make power networks unstable while evading
standard detection mechanisms (new collaboration

with Prof. Saman Zonouz)



PRIVACY IN CYBER-PHYSICAL
SYSTEMS CONTROL

[HiCons 2014] [CDC 2014] [ICDCN 2015]



Participants share private information for social benefit
Unfettered sharing can expose users in unexpected ways

Adding noise to private information can give privacy by
sacrificing some accuracy

Privacy—accuracy trade-off in database



. Traffic

1
in z =szi

Vehicle;

agents sharing no location data

X; = fi(x,z,u)

Vehicle;
x] = f}(x], Z, U)

Controller

u; = g;(pi, x;)

Controller
W = g;(x;)




agents sharing complete location data

X1
g Traffic
1
o | Z=_X
Vehicle;
X; = fi(x,z,u)
Controller
u; = g;(x;,z")

X1 :
Server
1
L Z zgle
Vehicle;
9

x] = f}(x], Z, U)

Controller
U = J9g; (z")




better distributed control while protecting
private location data

Obs: observation stream (location data) of the system bounded by time
"

Sensitive data: location way points ofallagents g = {g1, ..., gn }

g and g’ be two sequences location waypoints that are identical except

g; and g;'. The systemiis i£f
Plg leads to Obs]

P|g'leads to Obs]

< elgi-dil

Cost of privacy: sup E[Cost(g, M*) — Cost(g, M")]
gl

Worst case loss of efficiency (over all location waypoints of any agent)
for using differentially private sharing

Whatis the cost of privacyin distributed control?



differentially private control

g Traffic

Vehicle;
X; = filxi,z,u)

_ AT
X) = x1+Lap(?) )

Controller
u; = g;(x;,2)

sensitivity of
system to

5 Server
1
— Z = szl
AT
+ Lap(—)
E—
&

Vehicle;

9

x] = f}(x], Z, U)

change in
P private data
—

Controller
Y = 9g;(x,2)

MI



cost of privacy

Privacy: g and g’ be two sequences of observationsthat are identical

except g; and g;'. The system preserves differentially private iff
P|g leads to Obs]

Plg’'leads to Obs]

< elgi-dil

Cost of privacy: sup E[Cost(g, M") — Cost(g, M*)]
g

3

) for stablelinear systems [HiCons 2014]

Theorem. COP = O(NZE2

Costreasonable for short-lived agents and large number of agents



lower-bound on estimation accuracy
[Wang et al. CDC 2014]

suppose adversary estimates the initial system state from observations
minimal mean square estimator: X (t) = E[X(0)|Z(¢t), ..., Z(0)]

accuracy of this estimation process attimet & N is measured by the
entropy of the sequence H (X(t))

Noise N(t, X (1))

h Controller C d



Theorem: If the system is e-differentially private up to time ¢,
then for any s < t, the Shannon entropy of the estimator

H()?(S)) >n(l— In (g)), where n is the dimension of the
state of the system.

The minimum is achieved by adding n-dimensional Laplace
noise N(O)~Lap(%,n) at the beginningand N(t + 1) =
AN (t) successively.



summary and outlook

we have proposed a basic research problem on exploring the
trade-offs between (differential) privacy of distributed control
/ optimization and performance

established lower-bounds on (cost, estimation entropy)

connectionsto problemsin distributed optimization, learning,
empirical risk minimization, sensitivity analysis (verification)

we have proposed to organize a workshop on Science of
Security of Cyber-physical systems for CPSWeek 2016, Vienna



MEETING CPS VERIFICATION
CHALLENGES



verification problem

o4 design E.g., | /
simulink/steflow bug
CQ\% trace
algorithm A
R tools (c2e2) A
: proof (test suite)
system | establishing that
requirements | SelEn maels
: requirements




strategy: combine concrete numerical
simulations with symbolic analysis

givenstart @5 andtarget T

compute finite cover of initial set

from center x of
each cover

simulationso bloated  x\J
tube containsall trajectories from the cover

Union = over-approximation of reach set

Check intersection/containmentwith T
Refine

symbolicbloat computed from staticanalysis of
models; this is related to sensitivity [HSCC 2014]
[ATVA 2015]



sound & relatively complete)

(SoundneSs). Given hybrid automaton 4, initial set ®, unsafe set U,
time bound T, bound on discrete transitions N, if the algorithm 1 returns safe
or unsafe, then 4 is safe or unsafe.

(RobustSafety). GivenHA A = (V,Loc,A,D,T), an e-perturbation
~of Aisa new HA A’ thatis identical except, ' = B.(0),V £ € Loc,Inv’ =
B.(Inv) (b)a € A, Guard, = B:.(Guard,).

A is robustlysafeiff 3e > 0, such that A’ is safe for U, upto time bound T, and
transition bound N. Robustly unsafeiff3 € < 0 suchthat A’ is safe for U..

(Relative Completeness) The algorithm will always terminate
whenever the system s either robustly safe or robustly unsafe.
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application 1: powertrain verification

powertrain design is a critical piece for meeting
fuel efficiency and emissions targets for

automotive industry

simulink model of a powertrain control
benchmarks presented by Toyota [ATVA,
HSCC2014] as a verification challenge.

highly nonlinear polynomial differential
equations; discrete mode switches

timer =T

2= £ N\ o, » 700
o
power

x = f,(x)

sensorFaj

sensor/ fail
X

= [sp(x)




application 1: powertrain verification

our tool C2E2 is the first to verify air-fuel ratio remains within
required range for a set of driver behaviors

analysis is mostly automatic. project took less than 2 months

[CAV 2015] [ARCH 2015 award winning paper]
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air-fuel ratio
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Behavior of Air-Fuel ratio
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time
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application 2: pacemaker verification

2M medical devices recalled in the past decade; 24 % owing to software defects

challenge problem: verify properties of a pacemaker composed with a model of
cardiac tissue

composition of many identical cells: millions of modes, nonlinear differential
equations; compositional analysis

A B
RE=
=13 K=

S RE
8
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my

application 2: pacemaker verification

new algorithm for compositionally computing symbolic bloat
using ideas from input-to-state stability [Huang & Mitra, HSCC
2014]

first to verify this class of models [Huang et al. CAV 2014]

synthesize pacemaker parameters that prevent pacemaker
induced tachycardia [Huang et. al. IEEE Design and Test]

E
VwV\

3500
ms



summary

» we have developed algorithms and a software
tool for verification of a general class of cyber-
physical system models

— applied it to meet several verification challenges

e establishes connection between formal
verification, synthesis, and privacy of cyber-
physical systems



