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Abstract—Android applications pose security and privacy risks 
for end-users.  These risks are often quantified by performing 
dynamic analysis and permission analysis of the Android 
applications after release. Prediction of security and privacy 
risks associated with Android applications at early stages of 
application development, e.g. when the developer (s) are 
writing the code of the application, might help Android 
application developers in releasing applications to end-users 
that have less security and privacy risk. The goal of this paper 
is to aid Android application developers in assessing the security 
and privacy risk associated with Android applications by using 
static code metrics as predictors. In our paper, we consider 
security and privacy risk of Android application as how 
susceptible the application is to leaking private information of 
end-users and to releasing vulnerabilities. We investigate how 
effectively static code metrics that are extracted from the 
source code of Android applications, can be used to predict 
security and privacy risk of Android applications. We collected 
21 static code metrics of 1,407 Android applications, and use 
the collected static code metrics to predict security and privacy 
risk of the applications. As the oracle of security and privacy 
risk, we used Androrisk, a tool that quantifies the amount of 
security and privacy risk of an Android application using 
analysis of Android permissions and dynamic analysis. To 
accomplish our goal, we used statistical learners such as, 
radial-based support vector machine (r-SVM). For r-SVM, we 
observe a precision of 0.83. Findings from our paper suggest 
that with proper selection of static code metrics, r-SVM can be 
used effectively to predict security and privacy risk of Android 
applications.  
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I.  INTRODUCTION 
Gartner has reported that by 2017, mobile users would 

provide personalized data to more than 100 apps and services 
every day [1]. Considering the fact that Android applications 
have the potential of posing security and privacy risks for 
end-users [2], such wide-scale transmission of end-user data 
to third-party services, can lead to major data breaches, as 
well as security threats. For example, according to a recent 
news report, 75% of the top free Android applications were 
susceptible to data breaches [3]. These data breaches include 
leak of user names, leak of passwords, and leak of MAC 
addresses [4]. Android developers may create Android 
applications that re-use third party libraries that contain 
vulnerabilities and infected binaries, or use permission 
settings that expose private health and monetary information 
of the end-user [1], [5].  

Prior studies have showed the effectiveness of using 
static code metrics in predicting failure prone components 
[6]. In our work, we investigate whether metrics that are 
available from static analysis tools can be used to predict 
security and privacy risk of Android applications. Such 
investigation might help Android developers to identify risky 
Android applications at the development stage, and prior to 
release of the Android applications.                    

The goal of this paper is to aid Android application 
developers in assessing the security and privacy risk 
associated with Android applications by using static code 
metrics as predictors. 

In our paper, security and privacy risk of Android 
application refers to how susceptible the application is to 
leaking private information of end-users and to releasing 
vulnerabilities. We focus our effort in answering the 
following research question to achieve this goal:  

RQ: How effectively can statistical learners be used to 
predict different levels of security and privacy risk using 
static code metrics? 

In our research study, we analyzed a collection of 1,407 
Android applications with security and privacy risk scores 
that are computed using Androrisk [7], a tool that assigns a 
risk score to an Android application using analysis of 
Android permissions and dynamic analysis. The Androrisk 
risk score approximates the amount of security and privacy 
risk for the Android application based on Android activities 
and permissions used by the application and on dynamic 
analysis of the application [7]. We applied four statistical 
learners namely, classification and regression trees (CART), 
k Nearest Neighbor (kNN), Support Vector Machine (SVM), 
and Random Forest (RF) to predict the level of security and 
privacy risk.     

We summarize the contribution of this paper as 
following:  

• An evaluation of how static code metrics can be 
used to predict the security and privacy risk with the help of 
statistical learners.  

II. RELATED WORK 
Our paper is closely related to prior academic studies that 

have investigated detection and prediction of Android 
malware, and effects of source code properties of Android 
applications on performance and market success.  

Existing work had focused on detecting and categorizing 
malicious Android applications using Android permission 
files [8], dynamic analysis [9], and applying statistical and 
machine learning techniques [10]. Yang et al. [9] introduced 
DroidMiner that tracks Framework API calls executed by 



Android applications and used that information to detect and 
classify malicious Android applications. Gorla et al. [8] used 
differences in the description topics and permission levels of 
Android applications to detect Android malware applications 
in an unsupervised fashion. Peng et al. [10] stated the in-
effectiveness of permission-based alerting to inform end-
users about the privacy risks of Android applications and 
proposed multiple variants of Naïve Bayes models that 
categorizes market place Android applications as being 
highly or less risky.   

Prior research studies have also investigated the negative 
impacts of low quality source code of Android applications. 
Corral and Fronza [11] investigated how market success is 
dependent on source code quality of Android applications. 
Mannan et al. [12], investigated code smells within Android 
applications, and identified differences between the smell 
distribution of Android applications, and Java desktop 
applications. These research studies provide empirical 
evidence that source code of Android applications is 
correlated with Android application performance and quality.  

We use evidence from the above-mentioned papers as 
inspiration to conduct our research study. Our research study 
focuses on using source code to predict security and privacy 
risk of Android applications. 

III. METHODOLOGY 

In this section, we describe the major steps of our 
research study as summarized in Figure 1. 

 
Figure 1: Major steps of the methodology. 

A. Static Code Metrics 
We based our selection of static code metrics on prior 

research in the domain of software engineering. From prior 
research on defect prediction of software system, we 
observe static code metrics that can be derived from object-
oriented programming (OOP) languages, such as lines of 
code, number of classes, and number of functions, can be 
used to predict software defects [13]. Prior research has also 
provided evidence that duplicated pieces of code can 
contribute to defects [14]. Furthermore, practitioners 
perceive bad coding practices to hinder team productivity 
because bad coding practices, such as creating multiple 
instances of variables and objects, not closing network 
sockets, and use of duplicate string literals, might lead to 
software defects as well as to increased amount of rework 
[15], [16]. From evidence of prior research, we assume that 
extracting bad coding practices, duplications, and OOP 
attributes, in forms of metrics might help in predicting 

security and privacy risk of Android applications. We take 
all these empirical findings into account and hypothesize 
that the static code metrics that are used for defect 
prediction might also be used for predicting security and 
privacy risk of Android applications. In our research study, 
we use 21 static code metrics that are extracted using 
SonarQube [16]. SonarQube is a tool that applies static 
analysis on source code files, such as Java files, and produce 
metrics. As Android applications are built using a Java-
based Android SDK, we used SonarQube to extract the 
static code metrics from Java source code files of the 
Android applications. We present the 21 static code metrics 
in Table I. The definitions of the code metrics are available 
online1. 

Table I: Static Code Metrics 

Category Metrics 

Bad Coding 
Practice 

Blocker practices, Critical practices, 
Major practices, Minor practices, 

Total bad coding practices 

Duplication Duplicated blocks, Duplicated files, 
Duplicated lines 

Object-oriented Class complexity, Comment lines, 
Complexity, Density of comment 

lines, Files, File complexity, 
Function complexity, Lines, Lines 

of code, Methods, Number of 
classes, Percentage of comments, 

Percentage of duplicated lines 

B. Risk Scores 
We selected Androrisk for our security and privacy risk 

oracle because it has been successfully evaluated for both 
open source and commercial Android applications, and is 
widely used for research in the security and software 
engineering domain [17], [18], [19]. Androrisk considers 21 
risk categories of how an application can pose security and 
privacy risk for end-users. Using the mapping of activities to 
the 21 categories, Androrisk computes the security and 
privacy risk of the application using fuzzy logic [20]. For 
each Android application, Androrisk provides a security and 
privacy score between 0 and 100. We refer to security and 
privacy score of an Android application as ‘risk score’ for 
the rest of this paper. 

C. Dataset Processing 
To conduct our research study, we used an existing 

dataset provided by Krutz et al. [17]. This dataset contained 
Androrisk risk scores of 4,416 Android applications.  As 
datasets are susceptible to noise, Tan et al. [21] stated the 
importance of data cleaning before applying data analysis 
techniques on the dataset of interest. From our preliminary 
exploration, we observe that the original dataset in its raw 

                                                             
1 http://tiny.cc/android-metric 



format included applications that have no risk scores. We 
only included applications for which the risk score is 
available. Upon removing the applications with no risk 
scores, we obtain a pre-processed dataset, which we refer to 
as the ‘formatted dataset’ for the rest of this paper. 

D. Determining Risk Levels   
The risk scores of the Android applications are numeric, 

and these risk scores might be more interpretable to 
practitioners presented with respect to levels of risk. For 
example, two applications with risk scores of 70 and 73 
might be more interpretable for assessment if the two 
applications are marked as ‘high risk’. To achieve better 
interpretation of risk for Android applications, we apply k-
means clustering [21] on risk scores of Android 
applications. We specify two inputs for the k-means 
clustering technique: the count of clusters needed to create, 
and the data that will be used to create the clusters. The risk 
scores of the Android applications included in the formatted 
dataset are used as the data that will be used to create the 
clusters. We determined the count of clusters using a cluster 
evaluation technique called Dunn index [22]. We describe 
the process of determining the count of clusters using Dunn 
index as following:  

Using the risk scores of Android applications included in 
the formatted dataset, first we created {2, 5, 8, …, 100} 
clusters at j={1, 2, 3, …, 33}th cluster creation step. Then, 
for each of the j cluster creation steps we computed the 
Dunn index. Next, we determined the jth cluster creation 
step that yielded the highest Dunn index; we refer to this jth 
cluster creation step as ‘j_max’. The count of clusters 
created at j_maxth step is determined as the count of clusters 
that will be created using k-means clustering.   
In our research study we used the ‘clvalid’ package 
available in R v. 3.1.2, to implement Dunn index, and 
‘Scikit Learn’ [23] to apply k-means clustering. After 
applying k-means clustering, all the Android applications 
will be assigned to a unique cluster. Each of the created 
clusters is referred to as ‘level of risk’ or ‘risk level’ 
throughout the paper. 

E. Selecting Code Metrics 
All of the 21 identified static code metrics might not 

contribute to prediction of risk levels, and we need to 
determine which of the 21 static code metrics that can be 
used to predict risk levels. We used principal component 
analysis (PCA) [21] to identify the static code metrics that 
contribute to security and privacy risk of Android 
applications and do not confound each other. We selected 
the principal components that account for greater than 95% 
of the total variance. 

F. Predicting Risk Levels  
Using the selected set of static code metrics from our 

analysis of Section III-E, we use statistical learners to 
predict risk levels. We first briefly describe the statistical 
learners that we use in the study, and then we describe on 

how we apply the statistical learners to build prediction 
models.      

Prediction performance can vary significantly from one 
statistical learner to another [24] [25], and researchers have 
recommended the use of multiple statistical learners for 
building prediction models [25]. We select four statistical 
learners that belong to four categories: Radial-Basis Support 
Vector Machine (r-SVM) [26], Random Forests (RF) [27], k 
Nearest Neighbor (kNN) [28], Classification and Regression 
Trees (CART) [29]. 

We evaluate the performance of the created prediction 
models by applying 10-fold cross validation technique. We 
repeated the 10-fold cross validation 10 times to assess the 
statistical learner’s prediction stability. The performance of 
prediction models are tested by using nine of the 10 folds as 
training data, and the remaining fold as test data [30]. We 
created one prediction model for each of the four statistical 
learners with their default parameter provided in Scikit 
Learn [23]. For each of the four statistical learners we use 
the following two metrics to determine the prediction 
accuracy: 
• Precision: Precision is the fraction of the predicted 

levels by the prediction model of risk levels that are 
relevant [31].  

• Recall: Recall is the fraction of the relevant levels of 
risk levels that are predicted by the prediction model 
[31]. 

IV. EMPIRICAL FINDINGS 
We use this section to present our findings that answer 

our research question of interest. 
A. Dataset Processing 

The formatted dataset included 1,407 Android 
applications. We eliminated 3,009 of the 4,416 Android 
applications because they did not have a risk score in the 
original dataset. 
B. Determining Risk Levels 

In Section III-D, we have described how we used Dunn 
index to determine the count of clusters to which the 1,407 
Android applications will be assigned. According to Figure 
2, Dunn index is highest when five clusters are created, and 
therefore we determine the count of clusters to be five for 
our analysis. Taking the risk scores of the 1,407 Android 
applications and the count of clusters determined by Dunn 
index as input, we create five clusters using k-means 
clustering. We assign labels to these clusters: very low 
(VL), low (L), medium (M), high (H), and very high (VH). 
The centroids of the five clusters namely VL, L, M, H, and 
VH are respectively, 0.00, 16.43, 30.00, 44.29, and 50.96. 
These five clusters correspond to five levels of risk. The 
count of Android applications that belong to levels VL, L, 
M, H, and VH are respectively, 767, 590, 10, 12, and 28. 



 
Figure 2: Use of Dunn index to find optimal count of clusters. The 
Dunn Index is highest for five clusters. 

C. Selecting Appropriate Code Metrics 
We have applied PCA, as described in Section III-E, to 

determine the static code metrics that can be used for 
security and privacy risk prediction. We observe one 
principal component accounts for 98.99% of the total 
variance. Therefore, we will use one principal component 
for predicting security and privacy risk. The top five static 
code metrics included in the principal component are: lines, 
lines of code, complexity, total bad coding practices, and 
major practices, with weights respectively of, 0.83, 0.51, 
0.12, 0.11, and 0.08. 
D. Predicting Risk Levels 

We report our findings related to predicting security and 
privacy risk levels in Figures 3, and 4. In Figures 3, and 4 
the y-axis presents the measures of prediction performance 
namely, precision, and recall, whereas, the x-axis 
corresponds to the five levels of security and privacy risk 
namely, very high (VH), high (H), medium (M), low (L), 
and very low (VL). 

 

 
Figure 3: Precision scores of the four statistical learners. Overall r-
SVM performs better for all five levels of security and privacy risk. 

For example, according to Figures 3, and 4, the 
precision, and recall, for CART was 0.62, and 0.61, 
respectively considering level VL. Findings from Figures 3, 
and 4, indicate that one single learner is not sufficient 
enough that have high prediction performance with respect 
to precision, and recall for all the five levels of security and 
privacy risk.  

 
Figure 4: Recall scores of the four statistical learners. 

With respect to precision, r-SVM outperforms the other 
three statistical learners, as the average precision across the 
five levels for r-SVM is 0.83, which is the highest amongst 
the four statistical learners. With respect to predicting 
security and privacy risk levels ‘H’ and ‘VH’, r-SVM also 
outperforms the other three statistical learners, as r-SVM 
has a precision of 1.0 for levels ‘H’ and ‘VH’.  

V. LIMITATIONS 
We use this section to describe the limitations of the 

study:  
Dataset: In our study, we used a dataset that contained 
4,416 applications, and we have used data pre-processing 
techniques to get a formatted dataset of 1,407 applications. 
We acknowledge that more data can help to generalize our 
findings.   
Use of static code metrics: Our use and analysis of static 
code metrics for predicting multiple levels of risk is limited 
to the 21 static code metrics. We observe the importance of 
considering other static code metrics, as well as other types 
of metrics such as process metrics to predict multiple levels 
of security and privacy risk for Android applications, as 
future work. 

VI. CONCLUSION 
In this paper, we have evaluated how static code metrics 

such as number of lines, functional complexity, and 
McCabe’s complexity can be used to predict security and 
privacy risk for Android applications. We have evaluated 
four statistical learners and have observed that r-SVM can 
effectively predict risk levels. We conclude that with proper 
use of statistical learners, static code metrics might be used 
effectively to predict multiple levels of risk for Android 
applications. Researchers can take our findings into account 
for future research in the domain of Android security and 
privacy. 
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Answer to RQ: r-SVM can be used to build a prediction 
model for predicting security and privacy risk that takes 
static code metrics as input. We observe an average 
precision of 0.83 considering five levels of security and 
privacy risk for r-SVM. 
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