
Predicting Android Application Security and Privacy Risk With Static Code
Metrics

Akond Rahman*, Priysha Pradhan*, Asif Parthoϕ, and Laurie Williams*
North Carolina State University, Raleigh, NC, USA

Nested Apps, Dhaka, Bangladesh
*{aarahman, ppradha3, lawilli3}@ncsu.edu, ϕasif@nestedapps.com

Abstract—Android applications pose security and privacy risks
for end-users. These risks are often quantified by performing
dynamic analysis and permission analysis of the Android
applications after release. Prediction of security and privacy
risks associated with Android applications at early stages of
application development, e.g. when the developer (s) are
writing the code of the application, might help Android
application developers in releasing applications to end-users
that have less security and privacy risk. The goal of this paper
is to aid Android application developers in assessing the security
and privacy risk associated with Android applications by using
static code metrics as predictors. In our paper, we consider
security and privacy risk of Android application as how
susceptible the application is to leaking private information of
end-users and to releasing vulnerabilities. We investigate how
effectively static code metrics that are extracted from the
source code of Android applications, can be used to predict
security and privacy risk of Android applications. We collected
21 static code metrics of 1,407 Android applications, and use
the collected static code metrics to predict security and privacy
risk of the applications. As the oracle of security and privacy
risk, we used Androrisk, a tool that quantifies the amount of
security and privacy risk of an Android application using
analysis of Android permissions and dynamic analysis. To
accomplish our goal, we used statistical learners such as,
radial-based support vector machine (r-SVM). For r-SVM, we
observe a precision of 0.83. Findings from our paper suggest
that with proper selection of static code metrics, r-SVM can be
used effectively to predict security and privacy risk of Android
applications.

Keywords-Android application; code metrics; prediction;
security and privacy risk

I. INTRODUCTION
Gartner has reported that by 2017, mobile users would

provide personalized data to more than 100 apps and services
every day [1]. Considering the fact that Android applications
have the potential of posing security and privacy risks for
end-users [2], such wide-scale transmission of end-user data
to third-party services, can lead to major data breaches, as
well as security threats. For example, according to a recent
news report, 75% of the top free Android applications were
susceptible to data breaches [3]. These data breaches include
leak of user names, leak of passwords, and leak of MAC
addresses [4]. Android developers may create Android
applications that re-use third party libraries that contain
vulnerabilities and infected binaries, or use permission
settings that expose private health and monetary information
of the end-user [1], [5].

Prior studies have showed the effectiveness of using
static code metrics in predicting failure prone components
[6]. In our work, we investigate whether metrics that are
available from static analysis tools can be used to predict
security and privacy risk of Android applications. Such
investigation might help Android developers to identify risky
Android applications at the development stage, and prior to
release of the Android applications.

The goal of this paper is to aid Android application
developers in assessing the security and privacy risk
associated with Android applications by using static code
metrics as predictors.

In our paper, security and privacy risk of Android
application refers to how susceptible the application is to
leaking private information of end-users and to releasing
vulnerabilities. We focus our effort in answering the
following research question to achieve this goal:

RQ: How effectively can statistical learners be used to
predict different levels of security and privacy risk using
static code metrics?

In our research study, we analyzed a collection of 1,407
Android applications with security and privacy risk scores
that are computed using Androrisk [7], a tool that assigns a
risk score to an Android application using analysis of
Android permissions and dynamic analysis. The Androrisk
risk score approximates the amount of security and privacy
risk for the Android application based on Android activities
and permissions used by the application and on dynamic
analysis of the application [7]. We applied four statistical
learners namely, classification and regression trees (CART),
k Nearest Neighbor (kNN), Support Vector Machine (SVM),
and Random Forest (RF) to predict the level of security and
privacy risk.

We summarize the contribution of this paper as
following:

• An evaluation of how static code metrics can be
used to predict the security and privacy risk with the help of
statistical learners.

II. RELATED WORK
Our paper is closely related to prior academic studies that

have investigated detection and prediction of Android
malware, and effects of source code properties of Android
applications on performance and market success.

Existing work had focused on detecting and categorizing
malicious Android applications using Android permission
files [8], dynamic analysis [9], and applying statistical and
machine learning techniques [10]. Yang et al. [9] introduced
DroidMiner that tracks Framework API calls executed by

Android applications and used that information to detect and
classify malicious Android applications. Gorla et al. [8] used
differences in the description topics and permission levels of
Android applications to detect Android malware applications
in an unsupervised fashion. Peng et al. [10] stated the in-
effectiveness of permission-based alerting to inform end-
users about the privacy risks of Android applications and
proposed multiple variants of Naïve Bayes models that
categorizes market place Android applications as being
highly or less risky.

Prior research studies have also investigated the negative
impacts of low quality source code of Android applications.
Corral and Fronza [11] investigated how market success is
dependent on source code quality of Android applications.
Mannan et al. [12], investigated code smells within Android
applications, and identified differences between the smell
distribution of Android applications, and Java desktop
applications. These research studies provide empirical
evidence that source code of Android applications is
correlated with Android application performance and quality.

We use evidence from the above-mentioned papers as
inspiration to conduct our research study. Our research study
focuses on using source code to predict security and privacy
risk of Android applications.

III. METHODOLOGY

In this section, we describe the major steps of our
research study as summarized in Figure 1.

Figure 1: Major steps of the methodology.

A. Static Code Metrics
We based our selection of static code metrics on prior

research in the domain of software engineering. From prior
research on defect prediction of software system, we
observe static code metrics that can be derived from object-
oriented programming (OOP) languages, such as lines of
code, number of classes, and number of functions, can be
used to predict software defects [13]. Prior research has also
provided evidence that duplicated pieces of code can
contribute to defects [14]. Furthermore, practitioners
perceive bad coding practices to hinder team productivity
because bad coding practices, such as creating multiple
instances of variables and objects, not closing network
sockets, and use of duplicate string literals, might lead to
software defects as well as to increased amount of rework
[15], [16]. From evidence of prior research, we assume that
extracting bad coding practices, duplications, and OOP
attributes, in forms of metrics might help in predicting

security and privacy risk of Android applications. We take
all these empirical findings into account and hypothesize
that the static code metrics that are used for defect
prediction might also be used for predicting security and
privacy risk of Android applications. In our research study,
we use 21 static code metrics that are extracted using
SonarQube [16]. SonarQube is a tool that applies static
analysis on source code files, such as Java files, and produce
metrics. As Android applications are built using a Java-
based Android SDK, we used SonarQube to extract the
static code metrics from Java source code files of the
Android applications. We present the 21 static code metrics
in Table I. The definitions of the code metrics are available
online1.

Table I: Static Code Metrics

Category Metrics

Bad Coding
Practice

Blocker practices, Critical practices,
Major practices, Minor practices,

Total bad coding practices

Duplication Duplicated blocks, Duplicated files,
Duplicated lines

Object-oriented Class complexity, Comment lines,
Complexity, Density of comment

lines, Files, File complexity,
Function complexity, Lines, Lines

of code, Methods, Number of
classes, Percentage of comments,

Percentage of duplicated lines

B. Risk Scores
We selected Androrisk for our security and privacy risk

oracle because it has been successfully evaluated for both
open source and commercial Android applications, and is
widely used for research in the security and software
engineering domain [17], [18], [19]. Androrisk considers 21
risk categories of how an application can pose security and
privacy risk for end-users. Using the mapping of activities to
the 21 categories, Androrisk computes the security and
privacy risk of the application using fuzzy logic [20]. For
each Android application, Androrisk provides a security and
privacy score between 0 and 100. We refer to security and
privacy score of an Android application as ‘risk score’ for
the rest of this paper.

C. Dataset Processing
To conduct our research study, we used an existing

dataset provided by Krutz et al. [17]. This dataset contained
Androrisk risk scores of 4,416 Android applications. As
datasets are susceptible to noise, Tan et al. [21] stated the
importance of data cleaning before applying data analysis
techniques on the dataset of interest. From our preliminary
exploration, we observe that the original dataset in its raw

1 http://tiny.cc/android-metric

format included applications that have no risk scores. We
only included applications for which the risk score is
available. Upon removing the applications with no risk
scores, we obtain a pre-processed dataset, which we refer to
as the ‘formatted dataset’ for the rest of this paper.

D. Determining Risk Levels
The risk scores of the Android applications are numeric,

and these risk scores might be more interpretable to
practitioners presented with respect to levels of risk. For
example, two applications with risk scores of 70 and 73
might be more interpretable for assessment if the two
applications are marked as ‘high risk’. To achieve better
interpretation of risk for Android applications, we apply k-
means clustering [21] on risk scores of Android
applications. We specify two inputs for the k-means
clustering technique: the count of clusters needed to create,
and the data that will be used to create the clusters. The risk
scores of the Android applications included in the formatted
dataset are used as the data that will be used to create the
clusters. We determined the count of clusters using a cluster
evaluation technique called Dunn index [22]. We describe
the process of determining the count of clusters using Dunn
index as following:

Using the risk scores of Android applications included in
the formatted dataset, first we created {2, 5, 8, …, 100}
clusters at j={1, 2, 3, …, 33}th cluster creation step. Then,
for each of the j cluster creation steps we computed the
Dunn index. Next, we determined the jth cluster creation
step that yielded the highest Dunn index; we refer to this jth
cluster creation step as ‘j_max’. The count of clusters
created at j_maxth step is determined as the count of clusters
that will be created using k-means clustering.
In our research study we used the ‘clvalid’ package
available in R v. 3.1.2, to implement Dunn index, and
‘Scikit Learn’ [23] to apply k-means clustering. After
applying k-means clustering, all the Android applications
will be assigned to a unique cluster. Each of the created
clusters is referred to as ‘level of risk’ or ‘risk level’
throughout the paper.

E. Selecting Code Metrics
All of the 21 identified static code metrics might not

contribute to prediction of risk levels, and we need to
determine which of the 21 static code metrics that can be
used to predict risk levels. We used principal component
analysis (PCA) [21] to identify the static code metrics that
contribute to security and privacy risk of Android
applications and do not confound each other. We selected
the principal components that account for greater than 95%
of the total variance.

F. Predicting Risk Levels
Using the selected set of static code metrics from our

analysis of Section III-E, we use statistical learners to
predict risk levels. We first briefly describe the statistical
learners that we use in the study, and then we describe on

how we apply the statistical learners to build prediction
models.

Prediction performance can vary significantly from one
statistical learner to another [24] [25], and researchers have
recommended the use of multiple statistical learners for
building prediction models [25]. We select four statistical
learners that belong to four categories: Radial-Basis Support
Vector Machine (r-SVM) [26], Random Forests (RF) [27], k
Nearest Neighbor (kNN) [28], Classification and Regression
Trees (CART) [29].

We evaluate the performance of the created prediction
models by applying 10-fold cross validation technique. We
repeated the 10-fold cross validation 10 times to assess the
statistical learner’s prediction stability. The performance of
prediction models are tested by using nine of the 10 folds as
training data, and the remaining fold as test data [30]. We
created one prediction model for each of the four statistical
learners with their default parameter provided in Scikit
Learn [23]. For each of the four statistical learners we use
the following two metrics to determine the prediction
accuracy:
• Precision: Precision is the fraction of the predicted

levels by the prediction model of risk levels that are
relevant [31].

• Recall: Recall is the fraction of the relevant levels of
risk levels that are predicted by the prediction model
[31].

IV. EMPIRICAL FINDINGS
We use this section to present our findings that answer

our research question of interest.
A. Dataset Processing

The formatted dataset included 1,407 Android
applications. We eliminated 3,009 of the 4,416 Android
applications because they did not have a risk score in the
original dataset.
B. Determining Risk Levels

In Section III-D, we have described how we used Dunn
index to determine the count of clusters to which the 1,407
Android applications will be assigned. According to Figure
2, Dunn index is highest when five clusters are created, and
therefore we determine the count of clusters to be five for
our analysis. Taking the risk scores of the 1,407 Android
applications and the count of clusters determined by Dunn
index as input, we create five clusters using k-means
clustering. We assign labels to these clusters: very low
(VL), low (L), medium (M), high (H), and very high (VH).
The centroids of the five clusters namely VL, L, M, H, and
VH are respectively, 0.00, 16.43, 30.00, 44.29, and 50.96.
These five clusters correspond to five levels of risk. The
count of Android applications that belong to levels VL, L,
M, H, and VH are respectively, 767, 590, 10, 12, and 28.

Figure 2: Use of Dunn index to find optimal count of clusters. The
Dunn Index is highest for five clusters.

C. Selecting Appropriate Code Metrics
We have applied PCA, as described in Section III-E, to

determine the static code metrics that can be used for
security and privacy risk prediction. We observe one
principal component accounts for 98.99% of the total
variance. Therefore, we will use one principal component
for predicting security and privacy risk. The top five static
code metrics included in the principal component are: lines,
lines of code, complexity, total bad coding practices, and
major practices, with weights respectively of, 0.83, 0.51,
0.12, 0.11, and 0.08.
D. Predicting Risk Levels

We report our findings related to predicting security and
privacy risk levels in Figures 3, and 4. In Figures 3, and 4
the y-axis presents the measures of prediction performance
namely, precision, and recall, whereas, the x-axis
corresponds to the five levels of security and privacy risk
namely, very high (VH), high (H), medium (M), low (L),
and very low (VL).

Figure 3: Precision scores of the four statistical learners. Overall r-
SVM performs better for all five levels of security and privacy risk.

For example, according to Figures 3, and 4, the
precision, and recall, for CART was 0.62, and 0.61,
respectively considering level VL. Findings from Figures 3,
and 4, indicate that one single learner is not sufficient
enough that have high prediction performance with respect
to precision, and recall for all the five levels of security and
privacy risk.

Figure 4: Recall scores of the four statistical learners.

With respect to precision, r-SVM outperforms the other
three statistical learners, as the average precision across the
five levels for r-SVM is 0.83, which is the highest amongst
the four statistical learners. With respect to predicting
security and privacy risk levels ‘H’ and ‘VH’, r-SVM also
outperforms the other three statistical learners, as r-SVM
has a precision of 1.0 for levels ‘H’ and ‘VH’.

V. LIMITATIONS
We use this section to describe the limitations of the

study:
Dataset: In our study, we used a dataset that contained
4,416 applications, and we have used data pre-processing
techniques to get a formatted dataset of 1,407 applications.
We acknowledge that more data can help to generalize our
findings.
Use of static code metrics: Our use and analysis of static
code metrics for predicting multiple levels of risk is limited
to the 21 static code metrics. We observe the importance of
considering other static code metrics, as well as other types
of metrics such as process metrics to predict multiple levels
of security and privacy risk for Android applications, as
future work.

VI. CONCLUSION
In this paper, we have evaluated how static code metrics

such as number of lines, functional complexity, and
McCabe’s complexity can be used to predict security and
privacy risk for Android applications. We have evaluated
four statistical learners and have observed that r-SVM can
effectively predict risk levels. We conclude that with proper
use of statistical learners, static code metrics might be used
effectively to predict multiple levels of risk for Android
applications. Researchers can take our findings into account
for future research in the domain of Android security and
privacy.

0

0.2

0.4

0.6

0.8

1

1.2

2 11 20 29 38 47 56 65 74 83 92

D
un

n
in

de
x

Count of clusters

0
0.2
0.4
0.6
0.8

1

VL L M H VH

Pr
ec

is
io

n

Risk level

CART kNN r-SVM RF

0
0.2
0.4
0.6
0.8

1

VL L M H VH

R
ec

al
l

Risk level

CART kNN r-SVM RF

Answer to RQ: r-SVM can be used to build a prediction
model for predicting security and privacy risk that takes
static code metrics as input. We observe an average
precision of 0.83 considering five levels of security and
privacy risk for r-SVM.

REFERENCES
[1] Gartner, “Gartner Says by 2017, Mobile Users Will Provide
Personalized Data Streams to More Than 100 Apps and Services Every
Day,” Gartner Says by 2017, Mobile Users Will Provide Personalized Data
Streams to More Than 100 Apps and Services Every Day, 22-Jan-2014. .
[2] A. Atzeni, T. Su, M. Baltatu, R. D’Alessandro, and G. Pessiva,
“How Dangerous is Your Android App?: An Evaluation Methodology,” in
Proceedings of the 11th International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services, ICST, Brussels, Belgium,
Belgium, 2014, pp. 130–139.
[3] N. CBS, “Beware downloading some apps or risk ‘being spied
on,’” Beware downloading some apps or risk “being spied on,” 24-Feb-
2016. .
[4] NowSecure, “2016 NowSecure Mobile Security Report,” 2016
NowSecure Mobile Security Report, 2016. .
[5] J. Zang, K. Dummit, J. Graves, P. Lisker, and L. Sweeney, “Who
Knows What About Me? A Survey of Behind the Scenes Personal Data
Sharing to Third Parties by Mobile Apps.,” Who Knows What About Me? A
Survey of Behind the Scenes Personal Data Sharing to Third Parties by
Mobile Apps., 30-Oct-2015. .
[6] N. Nagappan and T. Ball, “Static Analysis Tools As Early
Indicators of Pre-release Defect Density,” in Proceedings of the 27th
International Conference on Software Engineering, New York, NY, USA,
2005, pp. 580–586.
[7] K. Dunham, S. Hartman, J. Morales, M. Quintans, and T.
Strazzere, Android Malware and Analysis. Boca Raton,FL: Taylor and
Francis, 2014.
[8] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking App
Behavior Against App Descriptions,” in Proceedings of the 36th
International Conference on Software Engineering, New York, NY, USA,
2014, pp. 1025–1035.
[9] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras,
“Computer Security - ESORICS 2014: 19th European Symposium on
Research in Computer Security, Wroclaw, Poland, September 7-11, 2014.
Proceedings, Part I,” M. Kuty\lowski and J. Vaidya, Eds. Cham: Springer
International Publishing, 2014, pp. 163–182.
[10] H. Peng et al., “Using Probabilistic Generative Models for
Ranking Risks of Android Apps,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, New York, NY,
USA, 2012, pp. 241–252.
[11] L. Corral and I. Fronza, “Better Code for Better Apps: A Study
on Source Code Quality and Market Success of Android Applications,” in
Mobile Software Engineering and Systems (MOBILESoft), 2015 2nd ACM
International Conference on, 2015, pp. 22–32.
[12] U. A. Mannan, I. Ahmed, R. A. M. Almurshed, D. Dig, and C.
Jensen, “Understanding Code Smells in Android Applications,” in
Proceedings of the International Conference on Mobile Software
Engineering and Systems, New York, NY, USA, 2016, pp. 225–234.
[13] N. Nagappan, T. Ball, and A. Zeller, “Mining Metrics to Predict
Component Failures,” in Proceedings of the 28th International Conference
on Software Engineering, New York, NY, USA, 2006, pp. 452–461.

[14] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do
Code Clones Matter?,” in Proceedings of the 31st International Conference
on Software Engineering, Washington, DC, USA, 2009, pp. 485–495.
[15] V. Ranganathan, “Developers Beware: Security Vulnerabilities
Resulting from Poor Coding Practices,” Developers Beware: Security
Vulnerabilities Resulting from Poor Coding Practices, 14-Mar-2015. .
[16] G. A. Campbell and P. P. Papapetrou, SonarQube in Action, 1st
ed. Greenwich, CT, USA: Manning Publications Co., 2013.
[17] D. E. Krutz et al., “A Dataset of Open-source Android
Applications,” in Proceedings of the 12th Working Conference on Mining
Software Repositories, Piscataway, NJ, USA, 2015, pp. 522–525.
[18] D. E. Krutz, N. Munaiah, A. Meneely, and S. A. Malachowsky,
“Examining the Relationship between Security Metrics and User Ratings of
Mobile Apps: A Case Study,” in Proc.\ WAMA, 2016, pp. 8–14.
[19] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An
Empirical Study of Cryptographic Misuse in Android Applications,” in
Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, New York, NY, USA, 2013, pp. 73–84.
[20] L. A. Zadeh, “Fuzzy logic = computing with words,” IEEE
Trans. Fuzzy Syst., vol. 4, no. 2, pp. 103–111, May 1996.
[21] P.-N. Tan, M. Steinbach, V. Kumar, and others, Introduction to
data mining, Indian Subcontinent Edition., vol. 1. UP, India: Pearson
Addison Wesley Boston, 2006.
[22] G. Brock, V. Pihur, S. Datta, and S. Datta, “clValid: An R
Package for Cluster Validation,” J. Stat. Softw., vol. 25, no. 1, pp. 1–22,
2008.
[23] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,”
J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011.
[24] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch,
“Benchmarking Classification Models for Software Defect Prediction: A
Proposed Framework and Novel Findings,” IEEE Trans. Softw. Eng., vol.
34, no. 4, pp. 485–496, Jul. 2008.
[25] T. Menzies, J. Greenwald, and A. Frank, “Data Mining Static
Code Attributes to Learn Defect Predictors,” IEEE Trans. Softw. Eng., vol.
33, no. 1, pp. 2–13, Jan. 2007.
[26] B. Schölkopf et al., “Comparing support vector machines with
Gaussian kernels to radial basis function classifiers,” Signal Process. IEEE
Trans. On, vol. 45, no. 11, pp. 2758–2765, 1997.
[27] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp.
5–32, 2001.
[28] P. Cunningham and S. J. Delany, “k-Nearest neighbour
classifiers,” Mult. Classif. Syst., pp. 1–17, 2007.
[29] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen,
Classification and regression trees. CRC press, 1984.
[30] R. Kohavi and others, “A study of cross-validation and bootstrap
for accuracy estimation and model selection,” in Ijcai, 1995, vol. 14, pp.
1137–1145.
[31] D. Powers, “Evaluation: From Precision, Recall and F Factor to
ROC, Informedness, Markedness & Correaltion,” Sch. Inform. Eng. Flinders
Univ. S. Aust. Adel., 2007.

