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Small Kernels
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Small trustworthy foundation

• hypervisor, microkernel, 
nano-kernel, virtual machine, 
separation kernel, exokernel ...

• High assurance components in 
presence of other components

Hardware

seL4

Linux
Server

Legacy App.
Legacy App.

Legacy 
Apps

Trusted
Service

Sensitive
App

TrustedUntrusted

seL4 API:
- IPC
- Threads
- VM
- IRQ
- Capabilities
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Functional Correctness

Specification

Code

What

How

Proof

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇒ unit s_monad

switch_to_thread t ≡ do

state ← get;

assert (get_tcb t state �= None);

arch_switch_to_thread t;

modify (λs. s (| cur_thread := t |))
od

constdefs
switch_to_idle_thread :: unit s_monad

switch_to_idle_thread ≡ do

thread ← gets idle_thread;

arch_switch_to_idle_thread;

modify (λs. s (| cur_thread := thread |))
od

definition
schedule :: unit s_monad where
schedule ≡ do

threads ← allActiveTCBs;

thread ← select threads;

switch_to_thread thread

od

OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A

imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A

begin

constdefs
set_thread_state :: obj_ref ⇒ thread_state ⇒ unit s_monad

set_thread_state ref ts ≡ do

tcb ← assert_opt_get $ get_tcb ref;

set_object ref (TCB (tcb (| tcb_state := ts |)))
od

defs
suspend_def:

suspend lazy thread ≡ do

ipc_cancel thread;

set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇒ unit s_monad

restart thread ≡ do

state ← get_thread_state thread;

when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66
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Proof Architecture

Specification

Proof

C Code
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*conditions apply

Specification

Proof

Expectation

Assumptions

Code

Assume correct:
- compiler + linker (wrt. C op-sem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)
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Proof Architecture
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C Code

Design

Specification

Haskell
Prototype



Kernel 
Requirements

Automatic 
Translation

Haskell
Prototype

Executable 
Specification

Abstract 
Specification

High-Performance 
C Implementation

Refinement ProofRefinement Proof

Manual Implementation Design Improvement
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Conceptual process model
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Descriptive process model
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Data Mining

...
    {
      "author": "Philip Derrin <philipd@cse.unsw.edu.au>", 
      "date": "2005-07-28 10:29:29 +1000", 
      "hex": "bbcd7d8c712b632ca0bcf3fbd1a83104fe57b0df", 
      "is_merge": false, 
      "module_stats": [
        {
          "lines": 1575, 
          "lines_added": 78, 
          "lines_removed": 86, 
          "name": "Haskell"
        }
      ], 
      "sequence": 175, 
      "short_descr": "Remove Instruction module and register constructors", 
      "total_lines": 0, 
      "utc_timestamp": 1122474569
    }, 
...

Repo Json/csv Graphs
 (LOC)

“Lessons”
script excel analysis

(manual)

svn/
hg

darcs



© NICTA 2010 From imagination to impact

13

Graphs: Haskell
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• Stability after design proof 
➡ design defect mainly in 

design proof
➡ early detection of design 

problems & minimize impact 
of code defects on design



!
"

#
$!
!
!
"

%
$!
!
!
"

&
$!
!
!
"

'
$!
!
!
"

()*+!%" ,-.+!/" ()*+!/" ,-.+!&" ()*+!&" ,-.+!0" ()*+!0" ,-.+!'" ()*+!'" ,-.+!1" ()*+!1" ,-.+2!" ()*+2!" ,-.+22"

1
s
t 

v
e

rs
io

n
 

n
e

w
 f

e
a

tu
re

 

n
e

w
 f

e
a

tu
re

 

d
o

c
u

m
e

n
ta

ti
o

n
 +

 

c
le

a
n

u
p

 

n
e

w
 f

e
a

tu
re

 

© NICTA 2010 From imagination to impact

14

!"#$%&&'()*+*+,-% .
-%
/ 0'/*1%

2%#345'()**6 0*1%'()**6'
2%#345'()**6'

7"35+%5"5/%

Graphs: Abstract

• Spec only started when prototype was stable 
• New features happen at every stage and are the main big changes in spec size
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Graphs: C code
• C code implemented extremely rapidly (design decision already made and partly 

validated with ongoing design proof)
•  separation of concern between design/spec/impl (eg: fastpath change didn’t 

impact spec/design much, only code)
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Graphs: Design Proof
• highlight proof phases and how they may overlap: in parallel with other proofs
• first attempt followed by updates due to new features
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Graphs: Code Proof
• highlight proof phases and how they may overlap: in parallel with other proofs
• first attempt followed by updates due to new features
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Integrity & Non-Interference
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Integrity & Non-Interference

capDL
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Capability Access Control
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C

C

R, W,
G, C7

R, W,
G, C6

R, W,
G, C
3

R, W,
G, C5 R, W,

G, C4

R, W,
G, C2

R, W,
G, C0

R

e0 e1

e3
R

e2

e4

R, W

e5

e6

e7

Authority Barrier

Information Flow
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Access Control Enforcement
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• Correctly enforcing the model

e0 e1

e3
R

e2

e4

R, W

e5

e6

e7

W

– Integrity
– Confidentiality
– Authority confinement

R

R
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A B

D

C

SAC

Nic-C Nic-A Nic-B

Nic-D

Router
SAC 
controller

Router

Router 
Manager

Timer

SAC 
controller

Router

Timer

Router 
ManagerTrusted

Untrusted

rw
rw

rw

rwcg

r
rw

w
w

w

rw
rw

rw

Virtualised Linux
10,000,000 LoC

Hand-written
300 LoC

Virtualised Linux
10,000,000 LoC

Hand-written
1,500 LoC

Example System

22
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Proof Architecture
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C Code

Design

Specification

Haskell
Prototype
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Proof Architecture
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C Code

Design

Specification

Haskell
Prototype

Access Control
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Execution Trace

U

I

K

T TU UKKK

user/kernel trace
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Safety Invariant

U

I

K

T TU UKKK

safety invariant

precise behaviourprecise behaviourhardware constrainedunknown input
unconstrained!

unknown input
garbage out

unknown input
unconstrained!
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Access Control!

U

I

K

T TU UKKK

safety invariant

precise behaviourprecise behaviourhardware constrainedunknown input
integrity bound

precise behaviourprecise behviour

access control
state
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Proof Architecture
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C Code

Design

Specification

Haskell
Prototype

Access Control
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Proof Architecture
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C Code

Design

Specification

Access Control Policy

IntegrityAuthority

Haskell
Prototype

Authority + Integrity:
= trace properties
preserved by refinement

Confidentiality:
= hyperproperty
refinement needs care
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What about Confidentiality?

• Harder to prove:
– Read not observable in the state
– Need to compare two executions
– Standard formulation: 

• non-interference + unwinding conditions

• Hyperproperty:
– Not always preserved by refinement

• Non-determinism:
– Non-determinism could hide “bad” implementation

30
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Proof Architecture

31

C Code

Design

Specification

Access Control Policy

IntegrityAuthority

Haskell
Prototype
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Current State
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C Code

Design

Specification

Access Control Policy

IntegrityAuthority

Haskell
Prototype

Infoflow Policy

Non-interference

Current State:
• developed proof calculus
• proved confidentiality 
   for deterministic part
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Current State
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C Code

Design

Abstract Specification

Access Control Policy

IntegrityAuthority

Haskell
Prototype

Infoflow Policy

Non-interference

Deterministic Specification

To do:
• remove nondeterminism
• prove the rest
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capDL & Verified System Startup

35
capDL
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 seL4 cap distribution  CAP  CAP
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IRQ

 CAP

IRQ
R

 CAP

ASID Pool

IOSR = IOSpace Root 
Pointer

IRQR = IRQ register 
reference

DFRAMES = Device Frames

 PCI bus 
config.

IO ports

Control Network Card

IRQ

... IO
S
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 CAP

IR
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D
FR

A
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S
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...

Simplified 
seL4 caps and objects

of example system
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System Startup

• Capability distribution determines:
– components & system architecture
– access control & security

• How do we describe cap distributions?
– abstraction of system state
– capability distribution language: capDL

• How to get from fresh boot to specific distribution?

38
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capDL process
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Hardware
seL4 microkernel
Init Component

Hardware
seL4 microkernel

Components

component-level 
specification

+

capDL 
system specification

user-level
initialisation component

provably correctly 
initialised and 

configured system

automatically generate
init component + binary capDL spec 

execute at 
system startup

automatically generate

system executing

capDL debug
dump

dump at runtime 
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Access Control
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Proof Architecture
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C Code

Design

Specification

Access Control

capDL kernel specroot task +

target distribution
+

actual system state
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Binary Verification
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Binary Verification
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*conditions apply

Specification

Proof

Expectation

Assumptions

Code

Assume correct:
- compiler + linker (wrt. C op-sem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)
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Binary Verification

46

C Code

Design

Specification

Haskell
Prototype

Binary Joint work with Magnus Myreen
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Binary Verification
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Isabelle C embedding

Design

Specification

Haskell
Prototype

Binary

HOL4 ARM semantics

Isabelle binary semantics

Done

automated proof in progress, currently works partially

Joint work with Magnus Myreen

C Code
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WCET
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WCET
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seL4: Made for Real-World Use

• Customer product prototypes
• Military-grade cross-domain (multi-level secure) devices 
• Safety-critical monitoring devices (mining)

• RapiLog: Leverage seL4 reliability to improve DBMS performance 
• driver for virtualization performance, multicore

• Fiji on seL4: Enable RT programming in HLL (Java)
• driver for RT work, potential for verified run time

• Secure system components: web browser, banking clients
• performance, resource-management practicalities
• remote attestation of critical software (TPM support)

• Energy management
• managing energy as a resource

• Eat your own dog food (web server, solar racing car)
• performance, functionality

50
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WCET Research Challenges

• Sound timing model of kernel

• Reasoning about timeliness of apps using kernel mechanisms
– Scheduling abstractions
– Extend resource management model to time (capabilities)
– Whole-system schedulability analysis

51

Determine worst-
case latencies of 
kernel operations 
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WCET Analysis Approach

• Result: WCET >1 sec!
– Pessimism of analysis (loop bounds, infeasible paths)

• Manual elimination of infeasible paths
• Result: 600 ms :-(

52

Main source
of pessimism!

So far manual
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Improving WCET
• Challenge: Improving WCET while 

– retaining ability to verify
– maintaining high average-case performance

• seL4 is an event-oriented kernel running with interrupts disabled

53

Kernel
entry

O(1)
operation

Long operation

Kernel
exit

O(1)
operation

O(1)
operation

O(1)
operation

Check pending
interrupts
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Placing Preemption Points

• Enabled by design pattern of “incremental consistency”:
– Large composite objects can be constructed (or deconstructed) from 

individual components
– Each component can be added/removed in O(1) time
– Intermediate states are consistent

54

Kernel
entry

O(1)
operation

Long operation

Kernel
exit

O(1)
operation

O(1)
operation

O(1)
operation

Check pending
interrupts
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Result

• Verification of modifications will be mostly routine
• Also now mostly automated: 

– loop counts
– infeasible path elimination

55

0 99.8 199.5 299.3 399.0

378
99.5 Observed

Computed

Factor 1,500 
improvement

Pessimism due to under-
specified hardware

µs
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RT in Industrial Automation

56

seL4 today
First protected RTOS with 

sound WCET analysis!
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Future: Whole-System Schedulability

57

Guarantee 
schedulability

seL4

Hardware

Arbitrary
behaviour

 Moderately 
Critical  Highly

Critical Not Critical



Summary



NICTA Copyright 2012 From imagination to impact

Proof Architecture

59

C Code

Design

Specification

Haskell
Prototype



NICTA Copyright 2012 From imagination to impact

3 Years Later (simplified)
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C Code

Design

Specification (+ deterministic)

Haskell
Prototype

Binary Sound
WCET

Access Control

Info Flow

capDL

root task
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