
L4.verified
3 years later

Gerwin Klein

NICTA Copyright 2012 From imagination to impact

Plan

2

History & Software Process

Integrity & Non-Interference

Binary Verification

capDL

WCET

NICTA Copyright 2012 From imagination to impact

History & Software Process

3

History & Software Process

Integrity & Non-Interference

Binary Verification

capDL

WCET

NICTA Copyright 2012 From imagination to impact

Small Kernels

4

Small trustworthy foundation

• hypervisor, microkernel,
nano-kernel, virtual machine,
separation kernel, exokernel ...

• High assurance components in
presence of other components

Hardware

seL4

Linux
Server

Legacy App.
Legacy App.

Legacy
Apps

Trusted
Service

Sensitive
App

TrustedUntrusted

seL4 API:
- IPC
- Threads
- VM
- IRQ
- Capabilities

NICTA Copyright 2012 From imagination to impact seL4

NICTA Copyright 2012 From imagination to impact 6

Functional Correctness

Specification

Code

What

How

Proof

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇒ unit s_monad

switch_to_thread t ≡ do

state ← get;

assert (get_tcb t state �= None);

arch_switch_to_thread t;

modify (λs. s (| cur_thread := t |))
od

constdefs
switch_to_idle_thread :: unit s_monad

switch_to_idle_thread ≡ do

thread ← gets idle_thread;

arch_switch_to_idle_thread;

modify (λs. s (| cur_thread := thread |))
od

definition
schedule :: unit s_monad where
schedule ≡ do

threads ← allActiveTCBs;

thread ← select threads;

switch_to_thread thread

od

OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A

imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A

begin

constdefs
set_thread_state :: obj_ref ⇒ thread_state ⇒ unit s_monad

set_thread_state ref ts ≡ do

tcb ← assert_opt_get $ get_tcb ref;

set_object ref (TCB (tcb (| tcb_state := ts |)))
od

defs
suspend_def:

suspend lazy thread ≡ do

ipc_cancel thread;

set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇒ unit s_monad

restart thread ≡ do

state ← get_thread_state thread;

when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66

NICTA Copyright 2012 From imagination to impact 7

Proof Architecture

Specification

Proof

C Code

NICTA Copyright 2012 From imagination to impact 8

*conditions apply

Specification

Proof

Expectation

Assumptions

Code

Assume correct:
- compiler + linker (wrt. C op-sem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)

NICTA Copyright 2012 From imagination to impact

Proof Architecture

9

C Code

Design

Specification

Haskell
Prototype

Kernel
Requirements

Automatic
Translation

Haskell
Prototype

Executable
Specification

Abstract
Specification

High-Performance
C Implementation

Refinement ProofRefinement Proof

Manual Implementation Design Improvement

© NICTA 2010 From imagination to impact

10

Conceptual process model

Start

Develop
Prototype

Prototype
(Haskell)

Translate
Prototype

Executable
Specification

Define
Specifications

Abstract
Specification

High-level Proving
(design refines spec)

Implementation
(C)

Low-level Proving
(code refines design)

Implement
Kernel

Kernel
Requirements

Formal Verification

Invariants

OS team

re
wo

rk

OS team

Code Bugs
to be Fixed

need to improve
performance?

FM team

any changes or
new features?

accumulate

End

Verified System

Performance Test

Design Bugs
to be Fixed

FM team

OS team

synchronizesynchronize

Performance
Impr. Requests

S1

S2
S5

S4S6

S7

any design bugs?any code bugs?

Design ProofCode Proof part ofreuse

Ph
as

e 2
 &

 3:
 Im

ple
me

nt
at

ion
 &

 Ve
rif

ica
tio

n
Ph

as
e 4

: M
ain

te
na

nc
e

stable enough to
verify design?

stable enough to
verify code?

Test Cases

Ph
as

e 1
: P

ro
to

ty
pe

 D
ev

elo
pm

en
t

any spec bugs?

Req. Changes or
New Features

Req. Changes or
New Features

New Features &
Changes Requests code requests?

Specification Bugs
to be Fixed

re
fin

e/
re

fa
cto

r

re
wo

rk
re

wo
rk

re
fin

e/
re

wo
rk

Req. Changes or
New Features

Req. Changes or
New Features

New Features &
Changes Requests

Artifact

Activity

Decision

moving direction

Legend

S3

Code Change
Requests

Design/Specification
Change Requests

© NICTA 2010 From imagination to impact

11

Descriptive process model

© NICTA 2010 From imagination to impact

12

Data Mining

...
 {
 "author": "Philip Derrin <philipd@cse.unsw.edu.au>",
 "date": "2005-07-28 10:29:29 +1000",
 "hex": "bbcd7d8c712b632ca0bcf3fbd1a83104fe57b0df",
 "is_merge": false,
 "module_stats": [
 {
 "lines": 1575,
 "lines_added": 78,
 "lines_removed": 86,
 "name": "Haskell"
 }
],
 "sequence": 175,
 "short_descr": "Remove Instruction module and register constructors",
 "total_lines": 0,
 "utc_timestamp": 1122474569
 },
...

Repo Json/csv Graphs
 (LOC)

“Lessons”
script excel analysis

(manual)

svn/
hg

darcs

© NICTA 2010 From imagination to impact

13

Graphs: Haskell

!"#$%&&'()*+*+,-% .
-%
/ 0'/*1%

2%#345'()**6 0*1%'()**6'
2%#345'()**6'

7"35+%5"5/%

• Stability after design proof
➡ design defect mainly in

design proof
➡ early detection of design

problems & minimize impact
of code defects on design

!
"

#
$!
!
!
"

%
$!
!
!
"

&
$!
!
!
"

'
$!
!
!
"

()*+!%" ,-.+!/" ()*+!/" ,-.+!&" ()*+!&" ,-.+!0" ()*+!0" ,-.+!'" ()*+!'" ,-.+!1" ()*+!1" ,-.+2!" ()*+2!" ,-.+22"

1
s
t

v
e

rs
io

n

n
e

w
 f

e
a

tu
re

n
e

w
 f

e
a

tu
re

d
o

c
u

m
e

n
ta

ti
o

n
 +

c
le

a
n

u
p

n
e

w
 f

e
a

tu
re

© NICTA 2010 From imagination to impact

14

!"#$%&&'()*+*+,-% .
-%
/ 0'/*1%

2%#345'()**6 0*1%'()**6'
2%#345'()**6'

7"35+%5"5/%

Graphs: Abstract

• Spec only started when prototype was stable
• New features happen at every stage and are the main big changes in spec size

!
"

#
!
!
!
"

$
!
!
!
!
"

$
#
!
!
!
"

%
!
!
!
!
"

%
#
!
!
!
"

&'()!*" +,-)!#" &'()!#" +,-)!." &'()!." +,-)!/" &'()!/" +,-)!0" &'()!0" +,-)!1" &'()!1" +,-)$!" &'()$!" +,-)$$"

1
s
t
v
e
rs

io
n

to
o
l
u
p
d
a
te

o
p
ti
m

is
a
ti
o
n
 (

fa
s
tp

a
th

)

© NICTA 2010 From imagination to impact

15

!"#$%&&'()*+*+,-% .
-%
/ 0'/*1%

2%#345'()**6 0*1%'()**6'
2%#345'()**6'

7"35+%5"5/%

Graphs: C code
• C code implemented extremely rapidly (design decision already made and partly

validated with ongoing design proof)
• separation of concern between design/spec/impl (eg: fastpath change didn’t

impact spec/design much, only code)

© NICTA 2010 From imagination to impact

16

!"#$%&&'()*+*+,-% .
-%
/ 0'/*1%

2%#345'()**6 0*1%'()**6'
2%#345'()**6'

7"35+%5"5/%

Graphs: Design Proof
• highlight proof phases and how they may overlap: in parallel with other proofs
• first attempt followed by updates due to new features

!"#$%&&'()*+*+,-% .
-%
/ 0'/*1%

2%#345'()**6 0*1%'()**6'
2%#345'()**6'

7"35+%5"5/%

© NICTA 2010 From imagination to impact

17

Graphs: Code Proof
• highlight proof phases and how they may overlap: in parallel with other proofs
• first attempt followed by updates due to new features

NICTA Copyright 2012 From imagination to impact

Plan

18

History & Software Process

Integrity & Non-Interference

Binary Verification

capDL

WCET

NICTA Copyright 2012 From imagination to impact

Integrity & Non-Interference

19

Integrity & Non-Interference

capDL

NICTA Copyright 2012 From imagination to impact

Capability Access Control

20

C

C

R, W,
G, C7

R, W,
G, C6

R, W,
G, C
3

R, W,
G, C5 R, W,

G, C4

R, W,
G, C2

R, W,
G, C0

R

e0 e1

e3
R

e2

e4

R, W

e5

e6

e7

Authority Barrier

Information Flow

NICTA Copyright 2012 From imagination to impact

Access Control Enforcement

21

• Correctly enforcing the model

e0 e1

e3
R

e2

e4

R, W

e5

e6

e7

W

– Integrity
– Confidentiality
– Authority confinement

R

R

NICTA Copyright 2012 From imagination to impact

A B

D

C

SAC

Nic-C Nic-A Nic-B

Nic-D

Router
SAC
controller

Router

Router
Manager

Timer

SAC
controller

Router

Timer

Router
ManagerTrusted

Untrusted

rw
rw

rw

rwcg

r
rw

w
w

w

rw
rw

rw

Virtualised Linux
10,000,000 LoC

Hand-written
300 LoC

Virtualised Linux
10,000,000 LoC

Hand-written
1,500 LoC

Example System

22

NICTA Copyright 2012 From imagination to impact

Proof Architecture

23

C Code

Design

Specification

Haskell
Prototype

NICTA Copyright 2012 From imagination to impact

Proof Architecture

24

C Code

Design

Specification

Haskell
Prototype

Access Control

NICTA Copyright 2012 From imagination to impact 25

Execution Trace

U

I

K

T TU UKKK

user/kernel trace

NICTA Copyright 2012 From imagination to impact 26

Safety Invariant

U

I

K

T TU UKKK

safety invariant

precise behaviourprecise behaviourhardware constrainedunknown input
unconstrained!

unknown input
garbage out

unknown input
unconstrained!

NICTA Copyright 2012 From imagination to impact 27

Access Control!

U

I

K

T TU UKKK

safety invariant

precise behaviourprecise behaviourhardware constrainedunknown input
integrity bound

precise behaviourprecise behviour

access control
state

NICTA Copyright 2012 From imagination to impact

Proof Architecture

28

C Code

Design

Specification

Haskell
Prototype

Access Control

NICTA Copyright 2012 From imagination to impact

Proof Architecture

29

C Code

Design

Specification

Access Control Policy

IntegrityAuthority

Haskell
Prototype

Authority + Integrity:
= trace properties
preserved by refinement

Confidentiality:
= hyperproperty
refinement needs care

NICTA Copyright 2012 From imagination to impact

What about Confidentiality?

• Harder to prove:
– Read not observable in the state
– Need to compare two executions
– Standard formulation:

• non-interference + unwinding conditions

• Hyperproperty:
– Not always preserved by refinement

• Non-determinism:
– Non-determinism could hide “bad” implementation

30

NICTA Copyright 2012 From imagination to impact

Proof Architecture

31

C Code

Design

Specification

Access Control Policy

IntegrityAuthority

Haskell
Prototype

NICTA Copyright 2012 From imagination to impact

Current State

32

C Code

Design

Specification

Access Control Policy

IntegrityAuthority

Haskell
Prototype

Infoflow Policy

Non-interference

Current State:
• developed proof calculus
• proved confidentiality
 for deterministic part

NICTA Copyright 2012 From imagination to impact

Current State

33
C Code

Design

Abstract Specification

Access Control Policy

IntegrityAuthority

Haskell
Prototype

Infoflow Policy

Non-interference

Deterministic Specification

To do:
• remove nondeterminism
• prove the rest

NICTA Copyright 2012 From imagination to impact

Plan

34

History & Software Process

Integrity & Non-Interference

Binary Verification

capDL

WCET

NICTA Copyright 2012 From imagination to impact

capDL & Verified System Startup

35
capDL

NICTA Copyright 2012 From imagination to impact

 seL4 cap distribution CAP CAP

CNODE

 CAP

 PD

 ...

R
M

 C
S

pa
ce

RM VSpace

 CAP

 CAP

 CAP

 CAP

 CAPs

 CAP

 CAPs

PD

 PDE

PT

 PTE

 FRAME

 FRAME
PTE

 PDE

 FRAME

R VSpace

...
...

 AEP

 EP

RM TCB

 CAP CAP ...

TI
M

E
R

 C
S

pa
ce

 CAP CAP ...

S
A

C
_C

 C
S

pa
ce

IRQ

 CAP

 CAP

...

Network Card A

IO
S

R

Untyped memory objects

...
..

 CAP

Network Card B Data Network Card

IR
Q

R

D
FR

A
M

E
S

IRQ

... IO
S

R

 CAP

IR
Q

R

IRQ

... IO
S

R

 CAP

IR
Q

R

TIMER CHIP

 Timer IO
Ports

 AEP

Timer TCB

SAC_C TCB

 CAPs

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAP

D
FR

A
M

E
S

D
FR

A
M

E
S

...
...

IRQ

 CAP

IRQ
R

 CAP

ASID Pool

IOSR = IOSpace Root
Pointer

IRQR = IRQ register
reference

DFRAMES = Device Frames

 PCI bus
config.

IO ports

Control Network Card

IRQ

... IO
S

R

 CAP

IR
Q

R

D
FR

A
M

E
S

...

...

Simplified
seL4 caps and objects

of example system

37

NICTA Copyright 2012 From imagination to impact

System Startup

• Capability distribution determines:
– components & system architecture
– access control & security

• How do we describe cap distributions?
– abstraction of system state
– capability distribution language: capDL

• How to get from fresh boot to specific distribution?

38

NICTA Copyright 2012 From imagination to impact

capDL process

39

Hardware
seL4 microkernel
Init Component

Hardware
seL4 microkernel

Components

component-level
specification

+

capDL
system specification

user-level
initialisation component

provably correctly
initialised and

configured system

automatically generate
init component + binary capDL spec

execute at
system startup

automatically generate

system executing

capDL debug
dump

dump at runtime

NICTA Copyright 2012 From imagination to impact

Proof Architecture

40

C Code

Design

Specification

Haskell
Prototype

Access Control

NICTA Copyright 2012 From imagination to impact

Proof Architecture

41

C Code

Design

Specification

Access Control

capDL kernel specroot task +

target distribution
+

actual system state

NICTA Copyright 2012 From imagination to impact

Plan

42

History & Software Process

Integrity & Non-Interference

Binary Verification

capDL

WCET

NICTA Copyright 2012 From imagination to impact

Binary Verification

43

Binary Verification

NICTA Copyright 2012 From imagination to impact 44

*conditions apply

Specification

Proof

Expectation

Assumptions

Code

Assume correct:
- compiler + linker (wrt. C op-sem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)

NICTA Copyright 2012 From imagination to impact

Proof Architecture

45

C Code

Design

Specification

Haskell
Prototype

NICTA Copyright 2012 From imagination to impact

Binary Verification

46

C Code

Design

Specification

Haskell
Prototype

Binary Joint work with Magnus Myreen

NICTA Copyright 2012 From imagination to impact

Binary Verification

47

Isabelle C embedding

Design

Specification

Haskell
Prototype

Binary

HOL4 ARM semantics

Isabelle binary semantics

Done

automated proof in progress, currently works partially

Joint work with Magnus Myreen

C Code

NICTA Copyright 2012 From imagination to impact

Plan

48

History & Software Process

Integrity & Non-Interference

Binary Verification

capDL

WCET

NICTA Copyright 2012 From imagination to impact

WCET

49

WCET

NICTA Copyright 2012 From imagination to impact

seL4: Made for Real-World Use

• Customer product prototypes
• Military-grade cross-domain (multi-level secure) devices
• Safety-critical monitoring devices (mining)

• RapiLog: Leverage seL4 reliability to improve DBMS performance
• driver for virtualization performance, multicore

• Fiji on seL4: Enable RT programming in HLL (Java)
• driver for RT work, potential for verified run time

• Secure system components: web browser, banking clients
• performance, resource-management practicalities
• remote attestation of critical software (TPM support)

• Energy management
• managing energy as a resource

• Eat your own dog food (web server, solar racing car)
• performance, functionality

50

NICTA Copyright 2012 From imagination to impact

WCET Research Challenges

• Sound timing model of kernel

• Reasoning about timeliness of apps using kernel mechanisms
– Scheduling abstractions
– Extend resource management model to time (capabilities)
– Whole-system schedulability analysis

51

Determine worst-
case latencies of
kernel operations

NICTA Copyright 2012 From imagination to impact

WCET Analysis Approach

• Result: WCET >1 sec!
– Pessimism of analysis (loop bounds, infeasible paths)

• Manual elimination of infeasible paths
• Result: 600 ms :-(

52

Main source
of pessimism!

So far manual

NICTA Copyright 2012 From imagination to impact

Improving WCET
• Challenge: Improving WCET while

– retaining ability to verify
– maintaining high average-case performance

• seL4 is an event-oriented kernel running with interrupts disabled

53

Kernel
entry

O(1)
operation

Long operation

Kernel
exit

O(1)
operation

O(1)
operation

O(1)
operation

Check pending
interrupts

NICTA Copyright 2012 From imagination to impact

Placing Preemption Points

• Enabled by design pattern of “incremental consistency”:
– Large composite objects can be constructed (or deconstructed) from

individual components
– Each component can be added/removed in O(1) time
– Intermediate states are consistent

54

Kernel
entry

O(1)
operation

Long operation

Kernel
exit

O(1)
operation

O(1)
operation

O(1)
operation

Check pending
interrupts

NICTA Copyright 2012 From imagination to impact

Result

• Verification of modifications will be mostly routine
• Also now mostly automated:

– loop counts
– infeasible path elimination

55

0 99.8 199.5 299.3 399.0

378
99.5 Observed

Computed

Factor 1,500
improvement

Pessimism due to under-
specified hardware

µs

NICTA Copyright 2012 From imagination to impact

RT in Industrial Automation

56

seL4 today
First protected RTOS with

sound WCET analysis!

NICTA Copyright 2012 From imagination to impact

Future: Whole-System Schedulability

57

Guarantee
schedulability

seL4

Hardware

Arbitrary
behaviour

 Moderately
Critical Highly

Critical Not Critical

Summary

NICTA Copyright 2012 From imagination to impact

Proof Architecture

59

C Code

Design

Specification

Haskell
Prototype

NICTA Copyright 2012 From imagination to impact

3 Years Later (simplified)

60

C Code

Design

Specification (+ deterministic)

Haskell
Prototype

Binary Sound
WCET

Access Control

Info Flow

capDL

root task

Thank You

SSRG@nicta

