
Summary and Conclusions
• Target: Programs without source

o Initial state: A known execution path 

approaches yet avoids a dangerous block

o Static analysis: Helps determine that the 

block is a relatively nearby area of interest

o Dynamic analysis: Suggests paths

through the area that may be feasible

o Constraint analysis: Provides inputs for 

feasible paths or recognizes impossibilities

• Benefit: Directed search avoids

reevaluation of known paths and the 

high cost of tempting yet futile tracks

• Conclusion: Combined analysis can 

effectively handle binary code paths

Simplified

TMF Formulas

Collapsed

Taint Graphs

Constraint Solver Interface (CSI)

State 

Con-

straints

Reduced 

Trace and 

Patches

PREIL 

Instruc-

tions

COMET ↔ Solver (SMT)

Input Assignments (solutions)

Data Flow

Subproblem Selection (Planner)

TMF Options and Results

1. Temporary variable for each operation

o Advantage: State of the art DICE yet easy to read and understand

2. Single expression for each branch variable

o Example: b1 = (!(!((0xffffffd0 + eax_1) -64 0x9))) &
(!((((0xffffffd0 + eax_1) -64 0x9) & 0x100000000) >> 0x20)) = 0

o Advantage: Maximal flexibility for constraint solvers’ optimizers

3. Temporaries from common subexpression elimination

o Example: t1 = (0xffffffd0 + eax_1) -64 0x9;
b1 = (!(!t1)) & (!((t1 & 0x100000000) >> 0x20)) = 0

o Advantage: Reduces execution time for solvers with weak optimizers

• Result: Order of magnitude size reduction for each problem

o Advantage: Enables each constraint problem to cover a longer path

Constraint Analysis: Components

• COMET: Constraint Optimization, Management,

Extensions, and Translations

o Constraint: Weakest preconditions for a given path

o Optimization: Reduce complexity of the constraint program 

o Management: Services, e.g., for joining subproblems

o Extensions: Additional constraints, e.g., around interesting code

o Translations: Various SMT solvers, e.g., STP and Boolector

• Optimization: Cutting out unnecessary constraints

o SLICE: Statically Limited Irrelevant Constraint Elimination

 Example: Remove PREIL for unused flags during preprocessing

o DICE: Dynamic Irrelevant Constraint Elimination (path specific)

o TMF: Taint Modeling Function (for Input-Output Relationships)

Constraint Analysis: Queries

STP input

STP output

COMET output

STP input

STP output

COMET output

ARE 

Query 

GUI

Negate 

the last 

branch 

(v. solve)

Negate 

the new 

last 

branch

Constraint Analysis: Inputs

• Trace: {(seq, ip, tid)}

o seq: Sequence number (optional; for reference to full, uncut trace)

o ip: Instruction pointer (raw bytes and disassembly is in full trace)

o tid: Thread identifier (pid and values read/written are in full trace)

• Code: {(ip, size, list)}

o size: Machine’s instruction size (for whether branches were taken)

o list: List of PREIL instructions (for a single machine instruction)

• Patch: {(seq, it, val)}

o it: Target (i.e., “<register>_<tid>” or “<memory>[<address>]”)

o val: Value assigned to it before seq (for partial observability)

• Others: Input constraints, output constraints, and settings

Static Analysis: Representations

• REIL: Reverse Engineering Intermediate Language

o Arithmetic: ADD, SUB, MUL, DIV, MOD, BSH (binary shift)

o Bitwise: AND, OR, XOR (can derive “NOT” from XOR)

o Conditional: BISZ (Boolean is-zero), JCC (jump conditional)

o Data transfer: LDM (load), STM (store), STR (store to register)

o Other: UNDEF (undefined), UNKN (unknown), NOP (no-op)

• PREIL: Power-REIL (more precise, faster, and clearer)

o Arithmetic: LSH (left shift) and RSH (right shift) instead of BSH

o Bitwise: Same as REIL (but allows bit ranges, resizing, etc.)

o Conditional: Adds IFM (conditional STM), IFR (conditional STR)

o Data transfer: Same as REIL (but allows multiple memories, etc.)

o Other: Same as REIL (but allows labels, macros, etc.)

Approach

Dynamic 
Tracing

Static 
Analysis

Program 
Database

Constraint 
Analysis

• Dynamic Tracing

o Instrumentation, e.g., Pin

o Emulation, e.g., TEMU

• Static Analysis

o Third-party, e.g., REIL

o First-party, e.g., PREIL

• Program Database

o Relational, e.g., MySQL

o NoSQL, e.g., HBase

• Constraint Analysis

o Third-party, e.g., Vine

o First-party, e.g., COMET

State

records

Simplified 

instructions

Taint query 

results

Input 

values

Planner

Introduction

• Goal: Enable users or semi-automated 

planners to iteratively negate branches and 

fabricate paths to reach areas of interest, 

explore unvisited blocks, and test code

units without the benefit of source code

• Applications: Program analysis (e.g., how 

are sockets used?), verification (e.g., are 

quality objectives still satisfied?), and 

optimization (e.g., are bounds exceeded?)

• Note: Analysts may further restrict the set

of acceptable solutions, e.g., “all but the last 

byte of an array must be in [0x20, 0x7E]”

 ARE: A System for Automated Reverse Engineering 
Robert Ross (robert.b.ross@baesystems.com) 
Cyber Operations and Networking Group (CONG) 

HCSS 2013 

This material is based upon work supported by DARPA and AFRL under contract FA8750-12-C-0097 
Approved for public release; distribution unlimited. Cleared for open publication on 4/23/2013 

ARE was developed jointly, e.g., with Vu Le and Greg Sadosuk of BAE Systems CONG 


