
ARSENAL: Automatic Requirements Specification Extraction from Natural Language
PI: Shalini Ghosh, co-PI: Natarajan Shankar, Supervisor: Patrick Lincoln, Key Personnel: Daniel Elenius

Industrial Collaborator: Wilfried Steiner (TTTech), Student Researcher: Wenchao Li (UC Berkeley), Other Sr. Personnel: Sam Owre

Bridging the Informal/Formal Gap
What is ARSENAL?

From Requirements to Formulas

Robust, scalable, trainable system to

•  Extract relevant information from requirements written in

semiformal natural language
•  Create formal models of requirements
•  Facilitate formal analysis of system properties encoded in

natural language requirements

Example: Router*

•  Initial software system designs are often developed in informal
natural language

 Facilitates discussion among stakeholders in early design

 Leads to confusion, lack of automation, and errors

•  Formal design specifications are desirable

 Eliminate ambiguity, allow consistency checking, and facilitate
 test generation

 Are more rigorous, and hence more difficult for designers

Goal: Bridge the gap between semi-formal natural language
requirements and precise formal specifications.

Specifications of Router Model
Requirements:
1.  If the WaitForFlush signal is asserted, the router shall stop routing

packets to connected devices until the FlushAll signal is triggered.
2.  If the FlushAll signal is not triggered, buffers shall not be flushed.
3.  If the router stops routing packets to connected devices, all buffers

shall be flushed.

ARSENAL generated LTL formulas:
1.  ([] ((assert(WaitForFlush)) -> stop(routing_packets, router,

connected_devices)) U (trigger(FlushAll))))
2. ([] ((!trigger(FlushAll)) -> (!flush(buffers))))
3. (((stop(routing_packets,router,connected_devices)) ->

 (flush(buffers))))

Inconsistency detected by ARSENAL:
•  State: WaitForFlush is asserted, FlushAll is not triggered.
•  Spec 2 => Buffer is not flushed, Spec 3 => Buffer is flushed

Requirements Modeling with ARSENAL

Requirements Modeling Today

 Benefits of ARSENAL

•  Computational approach to improve requirements engineering
•  Automatic consistency checking within a document
•  Mechanical consistency checks across documents
•  Checks for vacuous assertions

•  Enables detection of system issues early in the design cycle

•  Facilitates mechanical validation of critical complex systems:
Enables automatic checking of designs against requirements

•  Enables maintenance of formal specifications throughout the
design/build/test/maintain lifecycle, and the checking of those
requirements at each stage

•  Useful in also capturing business logic, security policies,
documentation

* This is a test example to
demonstrate the power of
ARSENAL. We are doing
actual case studies using the
TTTech TT-GbE End System
IP requirements document
-- it provides functional
requirements for an Ethernet-
compliant network interface
controller IP, one of the
solutions used to improve
the safety and reliability of
networked computer systems
in the transportation and
industrial segments.

