
Application Level Concurrency in Haskell:

Combining Events and Threads

Steve Zdancewic

Peng Li

University of Pennsylvania

(Research presented at PLDI 2007)

2

Building Network Services
• Network Services:

– Web servers, games, chat rooms,

peer-to-peer systems, …

• Concurrency is necessary:

– Mostly I/O-bound: many idle threads

– "C10K problem" 10,000 clients on one server?
[www.kegel.com/c10k.html]

• This talk: An attempt to reconcile these two approaches.

Web

Server

Clients

Threads

Simple programming model

Events

Scalability & Performancevs.

3

A Multithreaded Network Service

Requests

• One OS thread for each client

+ Simple programming model

- Less scalable:

inefficient memory usage,

context switching

Server

dispatch loop

Responses

Client session

threads

Number of clients

T
h
ro

u
g
h
p
u
t

Expected Performance
[Welsh et al. 2000]

4

Event-driven Network Service

Requests/Responses

• A few OS threads for handle all
clients

- Complex programming model

+ More scalable:
efficient memory usage,
few context switches

Number of clients

T
h
ro

u
g
h
p
u
t

Expected Performance
[Welsh et al. 2000]

Event loop/

Handlers

Event

queue

I/O

queue

I/O handler

5

Threads Events
Threads

(easier to program)

'thread' abstraction

System Calls

Event Handlers
(harder to program)

'event' abstraction

Direct Use

Scheduler
(hidden/difficult to customize)

Event Loop
(easier to customize)

• “Why threads are a bad idea
(for most purposes)” [Ousterhout 1996]

• “Why events are a bad idea
(for high concurrency servers)”
[von Behren, Condit, Brewer 2003]

Thread Continuation

Thread Scheduler

Exported System Function

Blocking Call

Event Handler

Event Loop

Event

Send / Await reply

~

~

~

~

“On the duality of operating system structures” [Lauer&Needham 1978]

6

Spectrum of Solutions

• Flash Web Server [Pai, Druschel, Zwaenepoel 1999]

• SEDA: Staged event-driven architecture [Welsh, Culler, Brewer, 2001]

• Capriccio: Scalable threads [von Behren, et al. 2003]

• User-level threads / co-routines / continuations / etc.
[Wand 1980], [Shivers 1997], [Claessen 1999],[Fisher & Reppy 2002],…

• Libraries/Compiler support for event-driven programs

– Python's "Twisted" Package [twistedmatrix.com]

– Automatic stack management in C++ [Adya, et al. 2002]

• Domain-specific languages

– Erlang

– Flux [Burns, et al 2006]

• …

7

Best of Both Worlds?
• Client Code: Threads

– One thread One client

– Familiar programming model

– Blocking I/O

• Internal Representation

– Hidden from the programmer

– Automatic transformation from

thread abstractions to events

• Scheduling:

– Event driven

– Customizable

– Non-blocking I/O

• Application level:

– Threads & scheduler

implemented in high-level

language

Threads
(easier to program)

'thread' abstraction

System Calls

Internal Representation
(hidden)

'event' abstraction

Direct Use

Event Loop
(easier to customize)

8

This Work: Network Services in Haskell

• Claim: High-level programming languages can simplify

programming of network services while yielding good

scalability and performance.

• Demonstrated using Haskell [www.haskell.org]

– Pure: strong, expressive type system that isolates effects

– Lazy: computations are performed 'on demand'

– Functional: first-class functions

9

Outline

• Application-level cooperative concurrency in Haskell

– Thread programming and Traces

– Schedulers and Event processing

– CPS translation and monads

• Examples

• Performance

• Future Directions & Conclusions

10

Implementing this Hybrid Model
"A poor man's concurrency monad"

[Claessen
1999]

Threads
(easier to program)

'thread' abstraction

System Calls

Internal Representation
(hidden)

'event' abstraction

Direct Use

Event Loop
(easier to customize)

Monads:
An embedded language of

thread primitives.

Higher-order functions:
Computations in continuation-

passing style (CPS).

Lazy datastructures:
Inversion of control.

11

Example Server Code

server s = do {

sock <- sock_accept s;

sys_fork (session sock);

server s;

}

session sock = do {

n <- sys_nbio (read …);

…<code>…

sys_wait sock EPOLL_READ;

…<code>…

sys_nbio (write …);

sys_ret;

}

Server

dispatch loop

Client session

threads

12

Thread Code: Producing a Trace

server s = do {

sock <- sock_accept s;

sys_fork (session sock);

server s;

}

session sock = do {

n <- sys_nbio (read …);

…<code>…

sys_wait sock EPOLL_READ;

…<code>…

sys_nbio (write …);

sys_ret;

}

SYS_FORK

13

Thread Code: Producing a Trace

server s = do {

sock <- sock_accept s;

sys_fork (session sock);

server s;

}

session sock = do {

n <- sys_nbio (read …);

…<code>…

sys_wait sock EPOLL_READ;

…<code>…

sys_nbio (write …);

sys_ret;

}

SYS_FORK

SYS_NBIO

14

Thread Code: Producing a Trace

server s = do {

sock <- sock_accept s;

sys_fork (session sock);

server s;

}

session sock = do {

n <- sys_nbio (read …);

…<code>…

sys_wait sock EPOLL_READ;

…<code>…

sys_nbio (write …);

sys_ret;

}

SYS_FORK

SYS_NBIO

SYS_WAIT

15

Thread Code: Producing a Trace

server s = do {

sock <- sock_accept s;

sys_fork (session sock);

server s;

}

session sock = do {

n <- sys_nbio (read …);

…<code>…

sys_wait sock EPOLL_READ;

…<code>…

sys_nbio (write …);

sys_ret;

}

SYS_FORK

SYS_NBIO

SYS_WAIT

SYS_NBIO

16

Thread Code: Producing a Trace

server s = do {

sock <- sock_accept s;

sys_fork (session sock);

server s;

}

session sock = do {

n <- sys_nbio (read …);

…<code>…

sys_wait sock EPOLL_READ;

…<code>…

sys_nbio (write …);

sys_ret;

}

SYS_FORK

SYS_NBIO

SYS_WAIT

SYS_NBIO

SYS_RET

17

Thread Code: Producing a Trace

server s = do {

sock <- sock_accept s;

sys_fork (session sock);

server s;

}

session sock = do {

n <- sys_nbio (read …);

…<code>…

sys_wait sock EPOLL_READ;

…<code>…

sys_nbio (write …);

sys_ret;

}

SYS_FORK

SYS_NBIO

SYS_WAIT

SYS_NBIO

SYS_FORK

SYS_RET

18

Thread Code: Producing a Trace

server s = do {

sock <- sock_accept s;

sys_fork (session sock);

server s;

}

session sock = do {

n <- sys_nbio (read …);

…<code>…

sys_wait sock EPOLL_READ;

…<code>…

sys_nbio (write …);

sys_ret;

}

SYS_FORK

SYS_NBIO

SYS_WAIT

SYS_NBIO

SYS_NBIO

SYS_WAIT

SYS_NBIO

SYS_NBIO

SYS_WAIT

SYS_NBIO

SYS_FORK

SYS_FORK

SYS_RET

SYS_RET

SYS_RET

19

• Reflect the trace of system calls as a datastructure:

• Key use of Haskell's laziness:
– Trace datatype represents potentially infinite trees

– Nodes of the tree are computed only when needed

• Strong, expressive types:
– IO Trace is the type of computations that do some I/O and then

produce a trace.

• Nodes provide the event abstraction

-- A lazy tree of system calls/events

data Trace =

SYS_RET

| SYS_FORK Trace Trace

| SYS_YIELD Trace

| SYS_NBIO (IO Trace)

| SYS_WAIT Socket EPOLL_Event Trace

| …

Trace Datatype

20

Event-driven Scheduler Code

SYS_FORK

SYS_NBIO

SYS_WAIT

SYS_NBIO

SYS_NBIO

SYS_WAIT

SYS_NBIO

SYS_NBIO

SYS_WAIT

SYS_NBIO

SYS_FORK

SYS_FORK

SYS_RET

SYS_RET

SYS_RET

Scheduling the events

=

traversing the tree!

21

Event-driven Scheduler Code

SYS_FORK

SYS_NBIO

SYS_WAIT

SYS_NBIO

SYS_NBIO

SYS_WAIT

SYS_NBIO

SYS_NBIO

SYS_WAIT

SYS_NBIO

SYS_FORK

SYS_FORK

SYS_RET

SYS_RET

SYS_RET

Example: Round robin

is just breadth-first

traversal.

Scheduling the events

=

traversing the tree!

22

Event-driven Scheduler Code

worker_main Q = do {

trace <- fetch_thread Q;

execute trace Q;

worker_main Q;

}

execute trace Q =

case trace of

SYS_RET -> return()

SYS_FORK t1 t2 ->

do { add_thread t1 Q;

add_thread t2 Q;

}

SYS_NBIO cmd ->

do { t <- cmd;

add_thread t Q

}

…

SYS_FORK

SYS_NBIO

SYS_WAIT

SYS_NBIO

SYS_NBIO

SYS_WAIT

SYS_NBIO

SYS_NBIO

SYS_WAIT

SYS_NBIO

SYS_FORK

SYS_FORK

SYS_RET

SYS_RET

SYS_RET

23

Threads to Events?

worker_main Q = do {

trace <- fetch_thread Q;

execute trace Q;

worker_main Q;

}

execute trace Q =

case trace of

SYS_RET -> return()

SYS_FORK t1 t2 ->

do { add_thread t1 Q;

add_thread t2 Q;

}

SYS_NBIO cmd ->

do { t <- cmd;

add_thread t Q

}

…

server s = do {

sock <- sock_accept s;

sys_fork (session sock);

server s;

}

session sock = do {

n <- sys_nbio (read …);

…<code>…

sys_wait sock EPOLL_READ;

…<code>…

sys_nbio (write …);

sys_ret;

}

SYS_FORK

SYS_NBIO

SYS_WAIT

re
a
d

y
_

q
u
e

u
e

Q

?Threaded code Trace Event Loop

SYS_NBIO

SYS_RET

24

• A monad is a datatype that describes programs written in a domain-
specific "embedded" sublanguage:

– Each monad provides some primitive commands

– Users can create "embedded programs" in the monad by composition

• Example: IO monad

-- Monad interface for a parameterized datatype M (excerpt)

class Monad M where

return :: a -> M a -- return a value

(>>=) :: M a -> (a -> M b) -> M b -- sequential composition

Monads in Haskell

-- Example primitive IO operations:

hGetChar :: Handle -> IO Char

hPutChar :: Handle -> Char -> IO ()

double :: Handle -> IO ()

double h =

hGetChar h >>= (\x ->

hPutChar h x >>= (_ ->

hPutChar h x >>= (_ ->

return ()

)))

double :: Handle -> IO ()

double h = do {

x <- hGetChar h;

hPutChar h x;

hPutChar h x;

}

25

CPS Conversion, Monadically
• A continuation is just a function that produces a Trace

• The datatype of CPS computations makes the continuation explicit

• All of this is hidden in a library

-- CPS Monad

newtype CPS a = CPS ((a -> Trace) -> Trace)

class Monad CPS where

return x = CPS (\c -> c x)

(CPS g) >>= f = CPS (\c -> g (\x -> let CPS h = f x in h c))

-- Complete a trace by putting SYS_RET at the leaves

build_trace :: CPS a -> Trace

build_trace (CPS f) = f (\c -> SYS_RET)

-- CPS primitive commands:

sys_ret = CPS (\c -> SYS_RET)

sys_fork f = CPS (\c -> SYS_FORK (build_trace f) (c ()))

sys_yield = CPS (\c -> SYS_YIELD (c ()))

sys_nbio f = CPS (\c -> SYS_NBIO (do x <- f; return (c x)))

…

26

Inversion of Control

worker_main Q = do {

trace <- fetch_thread Q;

execute trace Q;

worker_main Q;

}

execute trace Q =

case trace of

SYS_RET -> return()

SYS_FORK t1 t2 ->

do { add_thread t1 Q;

add_thread t2 Q;

}

SYS_NBIO cmd ->

do { t <- cmd;

add_thread t Q

}

…

server s = do {

sock <- sock_accept s;

sys_fork (session sock);

server s;

}

session sock = do {

n <- sys_nbio (read …);

…<code>…

sys_wait sock EPOLL_READ;

…<code>…

sys_nbio (write …);

sys_ret;

}

SYS_FORK

SYS_NBIO

SYS_WAIT

re
a
d

y
_

q
u
e

u
e

Q

CPSThreaded code Trace Event Loop

27

server s = do {

sock <- sock_accept s;

sys_fork (session sock);

server s;

}

session sock = do {

n <- sys_nbio (read …);

…<code>…

sys_wait sock EPOLL_READ;

…<code>…

sys_nbio (write …);

sys_ret;

}

Inversion of Control

worker_main Q = do {

trace <- fetch_thread Q;

execute trace Q;

worker_main Q;

}

execute trace Q =

case trace of

SYS_RET -> return()

SYS_FORK t1 t2 ->

do { add_thread t1 Q;

add_thread t2 Q;

}

SYS_NBIO cmd ->

do { t <- cmd;

add_thread t Q

}

…

SYS_FORK

SYS_NBIO

SYS_WAIT

re
a
d

y
_

q
u
e

u
e

Q

Threaded code Trace Event LoopCPS

28

server s = do {

sock <- sock_accept s;

sys_fork (session sock);

server s;

}

session sock = do {

n <- sys_nbio (read …);

…<code>…

sys_wait sock EPOLL_READ;

…<code>…

sys_nbio (write …);

sys_ret;

}

Inversion of Control

worker_main Q = do {

trace <- fetch_thread Q;

execute trace Q;

worker_main Q;

}

execute trace Q =

case trace of

SYS_RET -> return()

SYS_FORK t1 t2 ->

do { add_thread t1 Q;

add_thread t2 Q;

}

SYS_NBIO cmd ->

do { t <- cmd;

add_thread t Q

}

…

SYS_FORK

SYS_NBIO

SYS_WAIT

re
a
d

y
_

q
u
e

u
e

Q

Threaded code Trace Event LoopCPS

29

server s = do {

sock <- sock_accept s;

sys_fork (session sock);

server s;

}

session sock = do {

n <- sys_nbio (read …);

…<code>…

sys_wait sock EPOLL_READ;

…<code>…

sys_nbio (write …);

sys_ret;

}

Inversion of Control

worker_main Q = do {

trace <- fetch_thread Q;

execute trace Q;

worker_main Q;

}

execute trace Q =

case trace of

SYS_RET -> return()

SYS_FORK t1 t2 ->

do { add_thread t1 Q;

add_thread t2 Q;

}

SYS_NBIO cmd ->

do { t <- cmd;

add_thread t Q

}

…

SYS_FORK

SYS_NBIO

SYS_WAIT

re
a
d

y
_

q
u
e

u
e

Q

Threaded code Trace Event LoopCPS

30

Inversion of Control

worker_main Q = do {

trace <- fetch_thread Q;

execute trace Q;

worker_main Q;

}

execute trace Q =

case trace of

SYS_RET -> return()

SYS_FORK t1 t2 ->

do { add_thread t1 Q;

add_thread t2 Q;

}

SYS_NBIO cmd ->

do { t <- cmd;

add_thread t Q

}

…

server s = do {

sock <- sock_accept s;

sys_fork (session sock);

server s;

}

session sock = do {

n <- sys_nbio (read …);

…<code>…

sys_wait sock EPOLL_READ;

…<code>…

sys_nbio (write …);

sys_ret;

}

SYS_FORK

SYS_NBIO

SYS_WAIT

re
a
d

y
_

q
u
e

u
e

Q

SYS_NBIO

Threaded code Trace Event LoopCPS

31

Inversion of Control

worker_main Q = do {

trace <- fetch_thread Q;

execute trace Q;

worker_main Q;

}

execute trace Q =

case trace of

SYS_RET -> return()

SYS_FORK t1 t2 ->

do { add_thread t1 Q;

add_thread t2 Q;

}

SYS_NBIO cmd ->

do { t <- cmd;

add_thread t Q

}

…

server s = do {

sock <- sock_accept s;

sys_fork (session sock);

server s;

}

session sock = do {

n <- sys_nbio (read …);

…<code>…

sys_wait sock EPOLL_READ;

…<code>…

sys_nbio (write …);

sys_ret;

}

SYS_FORK

SYS_NBIO

SYS_WAIT

re
a
d

y
_

q
u
e

u
e

Q

SYS_NBIO

Threaded code Trace Event LoopCPS

32

Inversion of Control

worker_main Q = do {

trace <- fetch_thread Q;

execute trace Q;

worker_main Q;

}

execute trace Q =

case trace of

SYS_RET -> return()

SYS_FORK t1 t2 ->

do { add_thread t1 Q;

add_thread t2 Q;

}

SYS_NBIO cmd ->

do { t <- cmd;

add_thread t Q

}

…

server s = do {

sock <- sock_accept s;

sys_fork (session sock);

server s;

}

session sock = do {

n <- sys_nbio (read …);

…<code>…

sys_wait sock EPOLL_READ;

…<code>…

sys_nbio (write …);

sys_ret;

}

SYS_FORK

SYS_NBIO

SYS_WAIT

re
a
d

y
_

q
u
e

u
e

Q

SYS_NBIO

Threaded code Trace Event LoopCPS

33

Trace

Inversion of Control

worker_main Q = do {

trace <- fetch_thread Q;

execute trace Q;

worker_main Q;

}

execute trace Q =

case trace of

SYS_RET -> return()

SYS_FORK t1 t2 ->

do { add_thread t1 Q;

add_thread t2 Q;

}

SYS_NBIO cmd ->

do { t <- cmd;

add_thread t Q

}

…

server s = do {

sock <- sock_accept s;

sys_fork (session sock);

server s;

}

session sock = do {

n <- sys_nbio (read …);

…<code>…

sys_wait sock EPOLL_READ;

…<code>…

sys_nbio (write …);

sys_ret;

}

SYS_FORK

SYS_NBIO

SYS_WAIT

re
a
d

y
_

q
u
e

u
e

Q

SYS_NBIO

Threaded code Event LoopCPS

34

Inversion of Control

worker_main Q = do {

trace <- fetch_thread Q;

execute trace Q;

worker_main Q;

}

execute trace Q =

case trace of

SYS_RET -> return()

SYS_FORK t1 t2 ->

do { add_thread t1 Q;

add_thread t2 Q;

}

SYS_NBIO cmd ->

do { t <- cmd;

add_thread t Q

}

…

server s = do {

sock <- sock_accept s;

sys_fork (session sock);

server s;

}

session sock = do {

n <- sys_nbio (read …);

…<code>…

sys_wait sock EPOLL_READ;

…<code>…

sys_nbio (write …);

sys_ret;

}

SYS_FORK

SYS_NBIO

SYS_WAIT

re
a
d

y
_

q
u
e

u
e

Q

SYS_NBIO

Threaded code Trace Event LoopCPS

35

Outline

• Application-level cooperative concurrency in Haskell

– Thread programming and Traces

– Schedulers and Event processing

– CPS translation and monads

• Examples

• Performance

• Future Directions & Conclusions

36

Example Threaded Code
-- Sends a file over a socket

send_file sock filename =

do { fd <- open_file filename;

buf <- alloc_aligned_memory buffer_size;

sys_catch (

copy_data fd sock buf 0;

) \exception -> do {

file_close fd;

sys_throw exception;

} -- so the caller can catch it again

file_close fd;

}

-- Copy data from file descriptor to socket until EOF

copy_data fd sock buf offset =

do { num_read <- file_read fd offset buf;

if (num_read == 0) then return () else

do { sock_send sock buf num_read;

copy_data fd sock buf (offset + num_read);

}

}

Exception handler

Nested function call

Conditional branch

Function call to I/O lib

Recursion

System call

37

Example Event System Architecture
• Each event loop ("worker") runs in an OS thread - synchronized using queues

• Example configuration:

– Worker pool for CPU-intensive computations

– Worker pool for blocking IO operations

– Dedicated worker threads for monitoring epoll & AIO events

worker_main

worker_main

worker_main

worker_main

worker_blio

worker_blio

worker_epol

worker_aio

epoll interface

AIO interface

ready_queue

blio_queue

worker pool blio pool

38

Scheduler Implementation

• Epoll: high-performance "select()" on Linux

• AIO: asynchronous file I/O

• Wrap underlying C functions using Haskell's FFI

-- epoll event loop

worker_epoll sched = do {

-- wait for some epoll events

results <- epoll_wait;

-- write each thread in results to the ready_queue

mapM (add_thread (ready_queue sched)) results;

worker_epll sched;

}

39

Performance?

• Implementation
– Concurrent Haskell GHC 6.5 on Linux 2.6.15

• Haskell is a pure, lazy, functional language
– Significantly slower than C

– Uses garbage collection

• CPS threads are cheap and lightweight:
– Everything is heap allocated (no thread-local stack)

– Actual space usage depends on needed thread-local state

– Memory footprint for a minimal thread is just 48 bytes

– GC accounts for < 0.2% of the runtime in our experiments

• Events are efficient:
– Constant number of OS threads means less overhead

– Event-driven scheduling makes it easy to use high-performance
epoll and AIO interfaces

40

Disk head scheduling performance

• Each thread randomly

reads 4KB block

chosen from a 1GB file.

• Total data read is

512MB

• Processes are disk

bound: CPU utilization

is 1% in each case

41

FIFO performance with idle threads

• 128 pairs of active application-level

threads

• Each pair of threads ping-pongs

32KB blocks of data, for an overall

total of 64GB data transfer

• The processor runs one copy of

worker_main as a kernel thread

42

Test App: Web Server

Number of concurrent connections

• Simple web server:

370 lines main code,

220 lines scheduler

• Reading randomly

chosen 16KB files

43

Qualitative Experience

• Implementing other features:

– Exceptions

– Timers

– Mutexes, locks, and other synchronization mechanisms

• Easy to customize the schedulers

• Plugging in a user-level TCP stack (also in Haskell):

– Defining/interpreting new system calls: 22 LOC

– Event loop for incoming packets: 7 LOC

– Event loop for timers: 9 LOC

– Minimal changes elsewhere in the code

44

• Presentation at CUFP 2007

– Replaced Java-based servers with monadic CPS/event style

servers written in Ocaml.

– Supports 5,000 simultaneous users connecting via SSL

– Sustains 700+ TPS (with bursts of 1,500 TPS) during peaks

– Two major feature releases since initial deployment (mid-2006)

"Although developed independently, this work is the same vein as

(and, in some ways, validates) Peng Li and Steve Zdancewic's 'A

Language-based Approach to Unifying Events and Threads'…"

-- Chris Waterson CUFP 2007

www.liveops.com

http://www.liveops.com
http://www.liveops.com
http://www.liveops.com
http://www.liveops.com
http://www.liveops.com
http://www.liveops.com

45

Outline

• Application-level cooperative concurrency in Haskell

– Thread programming and Traces

– Schedulers and Event processing

– CPS translation and monads

• Examples

• Performance

• Future Directions & Conclusions

46

Multiprocessor Support
• Run one worker_main thread per CPU

• OS threads synchronized using Software Transactional Memory (STM)

• Use Haskell's STM monad
– Application-level thread library can still implement mutexes or locks if they are more

applicable

• Porting the implementation to use a multiprocessor was very easy

worker_main

worker_main

worker_main

worker_main

worker_blio

worker_blio

worker_epol

worker_aio

epoll interface

AIO interface

ready_queue

blio_queue

worker pool blio pool

47

Future Directions

• More experience with STM and multiprocessors

• More experiments with custom schedulers

• Languages other than Haskell?

– Ocaml, SML, Scheme, C#? (STM support may be harder)

• Provide different language support for concurrency?

– Provide only minimal support for concurrency in the runtime itself

– Move most scheduling into libraries

– Provide good syntactic support for CPS

– Integrate with STM?

• Peng Li and the GHC developers at MSR Cambridge

– Proposed re-design of the Haskell runtime system

48

Conclusions
• We should strive to get the best

of both worlds:

– Expressiveness and simplicity
of threads

– Scalability and flexibility of
event-driven systems

• Application-level concurrency in
Haskell

– CPS and explicit trace
datastructure to represent
events

– Programmers write code in
threaded style

– Schedulers traverse the trace to
drive the computation

• Haskell code can be found at:

www.cis.upenn.edu/~lipeng

Threads
(easier to program)

'thread' abstraction

System Calls

Internal Representation
(hidden)

'event' abstraction

Direct Use

Event Loop
(easier to customize)

49

Thanks!

50

Event-driven Scheduler Code

worker_main Q = do {

trace <- fetch_thread Q;

execute trace Q;

worker_main Q;

}

execute trace Q =

case trace of

SYS_RET -> return()

SYS_FORK t1 t2 ->

do { add_thread t1 Q;

add_thread t2 Q;

}

SYS_NBIO cmd ->

do { t <- cmd;

add_thread t Q

}

…

SYS_FORK

SYS_NBIO

SYS_WAIT

SYS_NBIO

SYS_NBIO

SYS_WAIT

SYS_NBIO

SYS_NBIO

SYS_WAIT

SYS_NBIO

SYS_FORK

SYS_FORK

SYS_RET

SYS_RET

SYS_RET

51

Multiprocessor Speedups (Best Case)

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

• 1024 Application-level threads

• Each thread performs a CPU-intensive

operation before yielding control

• Each processor runs one copy of

worker_main as a kernel thread

52

STM Synchronization Overheads (Worst Case)

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

M
ill

io
n
 I
n
c
s
/S

e
c

• 1 Application-level thread per processor.

• Each thread increments a shared integer: 3/4 of

the transactions roll back.

• Each processor runs one copy of worker_main

as a kernel thread.

