
A Business Case forA Business Case for
Functional ProgrammingFunctional Programming
John Launchbury
HCSS 2005

OutlineOutline

• Functional languages come of age
• Making a business from functional

languages
• Focus and brand
• High assurance development
• Looking forward

ABSTRACTION
LanguageLanguage
EvolutionEvolution

• Growth in
– Capabilities
– Expressiveness
– Manageability

Abstraction
=

Say what needs
to be said,

nothing more

Computer Language PedigreesComputer Language Pedigrees

Lambda
calculus

Turing
machines

M
ac

hi
ne

M
at

he
m

at
ic

s

Assembly

Fortran

COBOL

C
Simula C++

Java

Lisp
ML

Haskell

Computing Technology

1940 1960 1980 2000

EricssonEricsson

• Problem
– Build 40Gbit per sec

internet/telephone switch
– C++ project collapsed

• Solution
– Functional language:

Erlang Open Telecom Platform

Metrics: 6x increase in productivity
4x increase in product quality

AXD301 now powers Europe’s three largest
transit switches

PublishedPublished
ExperimentExperiment

• Haskell vs. Ada vs.
C++ vs. Awk vs. ...

• An Experiment in
Software Prototyping
Productivity
– Paul Hudak,

Mark P. Jones

• Experiment designed and conducted by Naval Surface Warfare
Center (NSWC)
– GEO server problem
– Component of a larger AEGIS system
– NSWC software development staff has many years experience

developing large, complex, software systems
– Problem tackled by experts in each programming language

Summary of MetricsSummary of Metrics

8]112 156 [Haskell

3 12 274 Relational Lisp

26 79 293 Proteus

34+0 251 Griffin

unreported 150 250 Awk/Nawk

unreported 130 1105 C++

28 200 800 Ada9X

23 714 767 Ada

10 465 85 Haskell

Development time
(hours)

Lines of
documentation

Lines of code Language

OrbitzOrbitz.com.com

• Problem
– Find good travel deals
– 30 yr old mainframe systems

• Solution: Orbitz web server search engine

Metrics: 1,000,000 queries per day
Substantial gain in market share
PCs instead of Mainframe

Functional languages:
smarter search algorithms,
fraction of the development cost

Third Party View of Third Party View of FLsFLs

• Basic data structures are easier to work with
– Vectors, many kinds of trees, etc.

• The compiler doesn't need much hand-holding
– In "x + 1.2" the type of x is obvious from context — it must

be a floating point value
– If you use x inconsistently, the compiler will complain

• Polymorphism
– Code that works on the shape of a binary tree can operate

on trees containing vectors, or strings, or integers, etc.
• Like templates in C++, without extra fussing or syntax

– One routine can be used in a variety of situations.
• Bottom line: you write less code

Third Party View …Third Party View …

• More advanced concepts built-in
– “Imagine passing a point to a routine and having it return a

function that moves a creature one step toward that point”
– Bizarre? Or just not in the usual C++ toolbox
– "Programming languages teach you not to want what they cannot

provide,”
[Paul Graham, ANSI Common Lisp]

• Safety
– No wild pointers
– No overrunning array bounds

• Interactivity
– The seemingly unachievable goal of C debuggers is to code up a

function and then immediately test it interactively …

Business beginning…Business beginning…

Have FP,
Can program

• 1999/2000
• Service focus
• Customers

– Government
– Local industry

Making a Business out of FPMaking a Business out of FP

• Build cool things that people should want
– Find sales people to sell it

• Sales is always the business
– Technology is a support department for

sales

Marketing identifies the right
product for Technology to build
so that Sales will be able to sell

Sales 101Sales 101 Rapport
Believability

Open ended questions
Most urgent problems?

1. Earn the right
2. Develop the need
3. Salesman aware
4. Customer aware
5. Offer solutions
6. Close

Listen.
Wait to see if bigger issues

are around the corner

Restate the problem.
Don’t assume the customer

sees it clearly.

What we can provide.
How valuable?
More analysis?

When should we start?
When would you pay us?

What are the barriers?

Automated Test EquipmentAutomated Test Equipment
Customer’s
chip-specific
testing code

Chip
Tester

• ATE vendor needs to provide backwards
compatibility

• Translation task
– Code cleaning to upgrade language
– OS migration
– API discovery & modification

• Problem: testing code contains IP
• Requirement: the code look-and-feel to

remain unchanged

Partial Change ListPartial Change List

• Type changes (explicate CONN
equivalences)

• Introduction & initialization of global and
/or local variables

• Type changes/initialization of struct
members

• Aggregate initialization (where array is
given all its values at once; need to
translate to explicit bit setting)

• Removal of redundant checks (no need
to check for end of array; done inside
API)

• Flag deprecated API elements
• Replacing malloc/free with API

create/destroy
• API function name/type changes

• Insert missing headers (#includes)
• Change/add prototypes to match

definition
• Add prototype declaration instead of

implicit forward declaration
• Remove syntactic clutter
• Remove/change ill-behaved declarations

(e.g., static struct, static char *)
• Make type casts explicit (i.e. double as

case scrutinee; cast to int)
• Change now illegal identifier names

(forced by ANSI changes)
• Change return statements for functions

that now return void
• Make implicit variable declarations

explicit (i.e., to int)

API DiscoveryAPI Discovery

• Old machine
– Test programs use arrays as connection lists

b1 = *c; /* set b1 to current bit */
b2 = *(c++); /* set b2 to next bit, move focus */
(c + 1) = b3; / set next bit to b3 */

• New machine
– Requires use of API for building connection lists

b1 = conn_getbit(c, c_current);
b2 = conn_getbit(c, c_current++);
conn_setbit(c, c_current + 1, b3);

/* 1. BEFORE */

debug_printf("**** DSP error in test %s,
occurred on bit # %d -->",
test_name (NULL),
(*plist & ~LASTBIT) + 1);

if ((log_ptr->vector >= f_scan_st[u])
&& (log_ptr->vector < f_scan_sp[u]))
{
if ((log_ptr->fail_bits[0]

== *even_ram)
|| (log_ptr->fail_bits[1]

== *even_ram))
{

ficm_write(even_ram, log_ptr->vector,
log_ptr->vector,
"H", UNSPECIFIED, UNSPECIFIED);

rep_str[2*u][log_ptr->vector - f_scan_st[u]] = '1';
}

/* 1. AFTER */

debug_printf("**** DSP error in test %s,
occurred on bit # %d -->",
test_name (NULL),
conn_getbit(plist, plist_local_counter) + 1);

if ((log_ptr->vector >= f_scan_st[u])
&& (log_ptr->vector < f_scan_sp[u]))
{
if ((log_ptr->fail_bits[0]

== conn_getbit(even_ram, even_ram_global_counter))
|| (log_ptr->fail_bits[1]

== conn_getbit(even_ram, even_ram_global_counter)))
{

ficm_write(even_ram, log_ptr->vector,
log_ptr->vector,
"H", UNSPECIFIED, UNSPECIFIED);

rep_str[2*u][log_ptr->vector - f_scan_st[u]] = '1';
}

/* 2. BEFORE */

for(pbl = 0; pbl < S_parConnPointer->nrbitl;
pbl++)

{
close_mba_relays

(S_parConnPointer->bitl[pbl]);
open_io_relays

(S_parConnPointer->bitl[pbl]);
prim_wait(3 MS);
if (MbaTest(S_parConnPointer->bitl[pbl],

SREXPD, SRESPD, DontDoMbaRly)
== FAIL)

goto finish;
close_io_relays

(S_parConnPointer->bitl[pbl]);
open_mba_relays

(S_parConnPointer->bitl[pbl]);

if (theSiteCount > 1 && aSiteFailed)
update_parconn (&S_tmpParConn, &p_sdbit);

}

/* 2. AFTER */

for(pbl = 0; pbl < parconn_getcount(S_parConnPointer);
pbl++)

{
close_mba_relays

(parconn_getconn(S_parConnPointer, pbl));
open_io_relays

(parconn_getconn(S_parConnPointer, pbl));
prim_wait(3 MS);
if (MbaTest(parconn_getconn(S_parConnPointer, pbl),

SREXPD, SRESPD, DontDoMbaRly)
== FAIL)

goto finish;
close_io_relays

(parconn_getconn(S_parConnPointer, pbl));
open_mba_relays

(parconn_getconn(S_parConnPointer, pbl));

if (theSiteCount > 1 && aSiteFailed)
parconn_update (S_tmpParConn, p_sdbit);

}

Building the translatorBuilding the translator

• C-Kit in Standard ML/NJ
• Tight schedule

Lesson 1
FP technology covers over a multitude of sins

Translators!!!Translators!!!

ATE market
Business

legacy code

IDEAL

C

COBOL
• Build demos
• Visit potential customers
• Align with channel partners

Market issuesMarket issues

Lesson 2
Keep the blue line above the red line

AnalysisAnalysis

• Didn’t read the market properly
– References
– Budgets

• Lost focus on our core business

• Needed to re-invent Galois
– Very challenging times

Lesson 3
It’s not about technology, it’s about relationships

Who are we?Who are we?

• Examination
– Look at what we’ve been successful at
– Look at our skill sets
– Ask our clients

• Synthesize
• Define the brand

Lesson 4
If you don’t know who you are,
then neither does anyone else

Specifications and Formal ToolsSpecifications and Formal Tools

• Early government contract
• Declarative specification

language
– Language tailored to the crypto

domain
– Designed with feedback from

cryptographers
• Execution and Validation Tools

– Tool suite for different
implementation and verification
applications

– In use by crypto-implementers

CryptolCryptol
The Language of

Cryptography

One Specification One Specification —— Many UsesMany Uses

Design Validate

Build

Cryptol
Interpreter

Domain-Specific
Design Capture

w0=u-I*I modp + u-I*wl mod p
s=f*(w0 +pw2) (mod q)

Verify crypto
implementations

Models and
test cases

FPGA(s)

C or Java

Target HW
code

Cryptol
Tools

Assured
Implementation

Special purpose
processor

High Assurance SoftwareHigh Assurance Software

Information AssuranceInformation Assurance
Cross

Domain
Security

Crypto
Devel. &

Validation

Secure
Middleware

Abstract Modeling

High Assurance Engineering

Prototype Development

Domain-Specific Language Design

Mission: Advanced technology development
for Information Assurance

Basic Research

Applied Research

Adv. Technology Dev.

Management Support

Demonstration
& Validation

Engineering Mfg
Development

Operational Systems
Development

Operations &
Maintenance

R
D

T&
E

O
&M

.

6.1

6.3

6.4

6.5

6.6

6.7

6.2

Technology ServicesTechnology Services

• Advanced technology development
– Applied research to bring new

technologies to bear
– Demonstration & validation to

ensure successful deployment
• Market

– Government
– Industry selling to government
– Other industry

• Business model
– Services and product licenses

• Seek partnerships elsewhere
– Critical for client success
– Outside of Galois’ core competency

Evaluated Assurance LevelsEvaluated Assurance Levels (EAL)(EAL)

Methodically designed, tested & reviewedEAL4

Methodically tested and checkedEAL3

Structurally testedEAL2

Functionally testedEAL1

COTS

Galois FocusGalois FocusSemi-formally verified design and testedEAL6

Semi-formally designed and testedEAL5

Formally verified design and testedEAL7

• NSTISSP 11: Effective 1 Jul 2002
– Acquisition of COTS IA products limited to NIAP

validated Products, or NIST validated Crypto Modules
– Acquisition of GOTS IA products limited to NSA

approved

Cost of Assurance/FunctionalityCost of Assurance/Functionality

Assurance

Functionality

Cost of Assurance/FunctionalityCost of Assurance/Functionality

Cost Savings

Assurance

Functionality

High Assurance DevelopmentHigh Assurance Development

• Non-functional, non-technical requirements
– Documented software process
– Physical security of code

• Security requirements
– Protection Profile (PP)

• User statement of security requirements
– Security Target (ST)

• Developer statement of the security functionality of a
product

• Verification and validation
– Traditional testing
– Formal and semi-formal designs and models

Early Use of ModelsEarly Use of Models

Time / Money

System

Module

Unit

Size

Models

• All other branches of engineering
make heavy use of mathematical
models

• Mathematically meaningful models
should be more prevalent in software

Profound cost-benefit of
early testing/analysis

(Semi(Semi--) Formally Verified Designs) Formally Verified Designs

• Even EAL7 does not require formal analysis of
the executable code

Functional
specification

High-level
design

Low-level
design

Executable
Code

Informal(Semi-)Formal
correspondence

Role of ASN.1Role of ASN.1

ASN.1

DER PER XER

• ASN.1 is a data-description
language
– E.g. for communication

protocols
• Goal

– Platform-independent data
descriptions

– Given the same semantics
by all parties

– Mutually intelligible and
interoperable

• ASN.1 used to specify
– Structure of packet content
– Format for data exchange

PDU Content

Exchange Format

Session Security

Transport

Data Object
Authentication /
Confidentiality

CMS

HTTP, FTP

TCP / IP

SMTP, X.400

IP / PPP

Benefits of using ASN.1Benefits of using ASN.1

• Interoperability
– Platform independence
– Vendor independence

• Abstract
– Expresses design-level concepts
– Facilitates discussion of protocol requirements

• Reuse
– Definitions from one application can be reused

effectively in other contexts
• Software flexibility

– Protocol layers can handle data without having to
understand the content

From ASN.1 to Executable CodeFrom ASN.1 to Executable Code

• ASN.1 specifications need to be
turned into executable code
– By hand, or
– By a compiler

• Compiler
– Input: ASN.1 description
– Output: Program code to run

application, e.g. on ECU

X.509

ASN.1 Compiler

ECU code

X.400

X.500
SET

MHEG

X.509

SNMPCMIS
CMIP SSL

The Challenge of ASN.1The Challenge of ASN.1
• ASN.1 is a LARGE language

– Many (~26) primitive types
– Many ways to combine components (e.g., CHOICE, SET, SEQUENCE,

SEQUENCE OF, SET OF, user-defined)
– Constraints (X.680, X.682), information objects (X.681),

parameterization (X.683)

• The ASN.1 definition is very dense
– Precise semantics of ASN.1 is very difficult to extract

• E.g. constraints and type equality given in terms of concrete syntax
– Features of the language interfere with each other

• ASN.1 executable code faces implementation challenges
– Numerous opportunities for overflowing machine representation

• E.g. arbitrarily long octet streams led to recent bug Microsoft ASN.1
library

– Common concepts get treated very differently
• E.g., long tags vs. long lengths vs. long values

Failure of ASN.1 codeFailure of ASN.1 code

• High impact
– Leads to attacker ingress, vulnerability to DoS
– ASN.1 code often run in “privileged” mode

• Costs of fixing ASN.1 problems estimated to be greater
than Y2K1

– More equipment affected
– Attacks lead to outages
– Repairs must be done more quickly, more often
– More regression testing required

• Configuration complexity

1 “Critical Infrastructure Protection Issues”, Bill Hancock, V.P. Security and Chief
Security Officer, Exodus, ITU Workshop on Creating Trust in Critical Network
Infrastructures, May 2002

Prototype High Assurance ASN.1Prototype High Assurance ASN.1

• Parser grammar
– Almost identical to

published ASN.1
definition (X.680
grammar)

– Direct comparison
feasible

• Code generation
– Multiple intermediate

forms (V1, V2, EnDe C)
– Mathematically

motivated
transformations from
one intermediate form
to the next

V1: type-based specification of
encode/decode

Derivation system gives a formal semantics
to ASN.1

V2: lambda calculus implementation of
encode/decode

Inlined, specialized version of V1
Gives a formal semantics to individual ASN.1
specifications

EnDe C: mini domain-specific language for
encode/decode

Translated from V2
Gives an operational semantics to individual
ASN.1 specifications

C: Final code target
Translated from EnDe C

The models form the compiler

Designed For Robustness Designed For Robustness

• Mapping to C for each EnDe C construct considered in
isolation

• Each mapping designed with robustness properties in mind:
– Use ADT-style API for all types

• The generated code handles all allocation
• The user handles freeing

– Encode calculates the buffer size required before encoding;
allocates accordingly

– All buffers have associated lengths
– All mallocs are guarded
– All pointer dereferences are guarded

• Run-time library designed from same principles

Random Coverage TestingRandom Coverage Testing

• Automatically-generated tests
– Developed coverage metrics for

the input space
– Tests expected behavior on valid

inputs
– Rejection behavior testing

framework designed

• Also handwritten tests
– Unit tests
– Regression testing

Octet stream equality

decodeV2

Data equality

Random
AST

Generator

==

encodeV2
Random

Data
Generator

encodeOSS

encodeV1 decodeV1

decodeOSS

== ==encodeC decodeC

Data equality

Engineering Engineering vs vs VerifyingVerifying

Engineering drivers
– Powerful abstraction

mechanisms
• Data, functional,

behavioral, name space
– Potential non-termination
– I/O
– State
– External system interaction
– Concurrency
– Exceptions
– Execution debugging,

profiling

Verification drivers
– Small and simple language
– Declarative semantics

• E.g., Set-theoretic

– Abstraction
• Including infinitary objects

– Proof automation and
debugging

– Executable
– External system/tool

interaction

System and
Programming
Languages

Verification
Languages
and Tools

Tradeoff and compromiseTradeoff and compromise

Haskell

Isabelle/HOL

Time

O’Caml

Pr
og

ra
m

m
in

g

Java

C

ACL2
ZAssembly

Verification

Haskell: An Applied Formal MethodHaskell: An Applied Formal Method

• Verification
– Equational reasoning
– Type-based theorems
– QuickCheck properties

• In development
– Programatica (OGI, PSU,

Oregon)
• Haskell + properties

– CoVer (Chalmers, Sweden)
• Translate Haskell programs

into input for theorem
provers

• Automatic QuickCheck
generation

– Other projects for linking
Isabelle/HOL with Haskell

• Specification language AND
Implementation language
– Semantics is sets+recursion
– Industrial-grade compiler
– Powerful abstraction

mechanisms
– Automatic memory

management
– Effects handled explicitly

• State, Concurrency,
Exceptions

– Flexible and safe
mechanism for external
interaction

Haskell implementationsHaskell implementations

OS

• Any compiled program
– Runs in the context of a run-time system
– Which is hosted by an operating system
– Which runs on a hardware platform

• Security/correctness evaluation is not just a
matter of looking at the application’s source
code

• Haskell on Bare Metal project
– Eliminate operating system component
– Demonstrate that run-time system supports and

enforces Haskell semantics
– Develop certification evidence that applies to any

application

Haskell

Runtime

RunRun--Time System Semantics and Time System Semantics and
Low Low --level Modellevel Model

• Haskell’s RTS Semantics
– Abstract machine transition rules
– Expressed as a set of Structural Operational

Semantics (SOS)

• Implementation model
– Based on the C code implementation of the RTS
– Written in Haskell
– Low-level enough that we can relate it to the

implementation source code

Operational SemanticsOperational Semantics

ℇ〚M〛is the
denotational

semantics for M

V is the
value of M

M wasn’t
already

evaluated

If the things
above the line
are true, then
we can deduce

the thing
below the line

Semantics for imperative variablesSemantics for imperative variables

Model of the program state

e.g. νr,s. ({M} | <3>r | <89>s)

The main program An IORef called r,
holding 3

Semantics for imperative variablesSemantics for imperative variables

Rules for read, write IORefs

Uses the framework of monads

LowLow--level RTS Semanticslevel RTS Semantics

• The RTS executes STG-Machine code
– Each concurrent thread has a state:

– The Heap is shared between threads
• The SOS rules specify transitions:

<Heap, Registers, Code, Stack>t

<Heap, Registers, Code, Stack>t → <Heap’, Registers’, Code’, Stack’>t

A LowA Low--level Examplelevel Example

• MVars are Haskell’s primitive form of concurrent
synchronization
– Like semaphores-with-data
– Three operations:

• newEmptyMVar: creates an empty MVar
• putMVar: stores a value in an empty MVar (blocks if the

MVar is full)
• takeMVar: extracts a value from a full MVar, leaving it

empty (blocks if the MVar is empty)

• Each of these is a primitive in the RTS
– They have to be, because blocking and unblocking of

threads requires changing the RTS state
– But they still have a clear and formal semantics…

Model for Model for takeMVartakeMVar

• There are three cases:
– The MVar in question is empty, so we have to block
– The MVar is full, and no threads are waiting to put
– The MVar is full, and there are threads waiting to put

<H, Rs { R1 = MVar Nothing ts, … }, takeMVar, σ>t →
<H’, Rs { R1 = MVar Nothing (t:ts) }, BLOCK, σ>t

<H, Rs { R1 = MVar (Just v) [], … }, takeMVar, σ>t →
<H’, Rs { R1 = MVar Nothing [] }, v, σ>t

<H, Rs { R1 = MVar (Just v) (u:ts), … }, takeMVar, σ>t →
<H’, Rs { R1 = MVar (Just w) ts }, v, σ>t,

<_, Rs, putMVar w, σ’>u

(Semi(Semi--) Formal Correspondence) Formal Correspondence

• Models of Haskell’s RTS

Low-level
abstract machine

rules

High-level
SOS rulesSemantics

Executable
Code

(Semi-)Formal
correspondence

Informal

Eliminating the OSEliminating the OS

Separation layer

OS

Runtime+

Runtime

Haskell

Haskell

• Minimize size of system underneath
– Extend RTS slightly
– Host directly on separation layer
– Formal model for RTS

• High assurance platform
– Separation kernel provides

coarse-grained security
constraints

– Haskell types provide fine-
grained security assurances

• Evaluation
– Evaluate RTS system once
– Evaluation focuses on

application, not infrastructure

Haskell

Runtime

Haskell

Runtime+

Network ServicesClients Trusted Services Engine

IPSec/SSL

Active Directory Server
- Authentication (KDC)
- Directory (LDAP)

KDC LDAP

KDC

Active Directory Server
- Authentication (KDC)
- Directory (LDAP)

LDAP

Integrity
Checker

Integrity
Checker

.

.

MILS Separation Kernel

TCP/IP

TCP/IP

TCP/IP HTTPS
WebDAV

HTTPS
WebDAV

HTTPS
WebDAV

File
Control

File
Control

File
Control

Read
Down

Read
Down

Same

..

IPSec/SSL

..

Focus, focus, focusFocus, focus, focus

Business Benefits of Functional Business Benefits of Functional
LanguagesLanguages

Executable
(semi)-formal

method

Executable
(semi)-formal

method
High

Productivity
High

Productivity

Unique
niche

Unique
niche

Quality of
engineers
Quality of
engineers

Business Issues of HaskellBusiness Issues of Haskell

DebuggingDebugging LibrariesLibraries

Government
requirements
Government
requirements

SupportSupport
Abstraction
addiction

Abstraction
addiction

What is FP’s Brand?What is FP’s Brand?

Values
Types

Monads

Expressive

AbstractionCool

Assurance

Rapid Dev

Correctness

Technology directionsTechnology directions

• Spectrum from Haskell—HOL

• Control over sensitive values in the
heap

ConclusionsConclusions

• It’s been an incredible experience

• FP languages are as good as we hoped

• Business and Technology can go hand in
hand

	A Business Case for Functional Programming
	Outline
	Language Evolution
	Computer Language Pedigrees
	Ericsson
	PublishedExperiment
	Summary of Metrics
	Orbitz.com
	Third Party View of FLs
	Third Party View …
	Business beginning…
	Making a Business out of FP
	Sales 101
	Automated Test Equipment
	Partial Change List
	API Discovery
	Building the translator
	Translators!!!
	Market issues
	Analysis
	Who are we?
	Specifications and Formal Tools
	One Specification — Many Uses
	High Assurance Software
	Technology Services
	Evaluated Assurance Levels (EAL)
	Cost of Assurance/Functionality
	Cost of Assurance/Functionality
	High Assurance Development
	Early Use of Models
	(Semi-) Formally Verified Designs
	Role of ASN.1
	Benefits of using ASN.1
	From ASN.1 to Executable Code
	The Challenge of ASN.1
	Failure of ASN.1 code
	Prototype High Assurance ASN.1
	Designed For Robustness
	Random Coverage Testing
	Engineering vs Verifying
	Tradeoff and compromise
	Haskell: An Applied Formal Method
	Haskell implementations
	Run-Time System Semantics and Low -level Model
	Operational Semantics
	Semantics for imperative variables
	Semantics for imperative variables
	Low-level RTS Semantics
	A Low-level Example
	Model for takeMVar
	(Semi-) Formal Correspondence
	Eliminating the OS
	Focus, focus, focus
	Business Benefits of Functional Languages
	Business Issues of Haskell
	What is FP’s Brand?
	Technology directions
	Conclusions

