
Abstract 

Link discovery and analysis, or connecting the 
dots, is a key component of intelligence analysis. 
Little principled analysis of this process has oc-
curred. This paper presents a quantitative analy-
sis of this process using a model based on the 
metaphor of identifying and assembling pieces 
of jigsaw puzzles.  Specifically, it evaluates the 
probability that a particular puzzle can be recog-
nized and classified based on various parameters 
describing data volumes, number of analysts, 
number of pieces required for recognition, and 
fraction of interesting puzzles. Combinatorial 
techniques are used to provide a closed-form so-
lution for both single-analyst and multi-analyst 
collaborative situations. Computational experi-
ments that demonstrate the effects of different 
parameters and structures are described. The key 
result is that factors that affect the likelihood of 
related pieces’ being presented to a single ana-
lyst – such as the collection of more data – 
dominate the solution probability. 

1. Introduction: The Puzzle Model 
Intelligence analysis is sometimes described metaphori-
cally as putting together the pieces in a jigsaw puzzle to 
enable recognition of the picture.  Link discovery and 
analysis is a formal name for this process of connecting 
the dots [1].  It consists of inferring interesting, relevant 
information from masses of relational data by consider-
ing the patterns of connections between individual data 
elements.  The key difficulty is that no piece of informa-
tion is significant in isolation; rather, it is the combina-
tion in context of many related pieces of data that provide 
indications of significance.  Much data are ultimately 
irrelevant, but this can be determined only after they are 
connected together.  However, it is impossible to con-
sider all possible connections because of the combinato-
rial complexity.  Hence, an iterative process of connect-
ing elements of information and evaluating significance 
is needed.  Analysts perform this process to the best of 
human ability, matching available data against implicit or 

explicit patterns, using the partial matches to guide the 
acquisition of additional data, and repeating until uncer-
tainty is reduced and a conclusion can be obtained. 
 The likelihood of detecting patterns of interest is af-
fected by many factors, including: 
x Number of entities and relationships 
x Graph-structure of relationships 
x Data completeness and correctness 
x Number, size, and structure of interesting (and un-

interesting) patterns 
x Similarity between interesting and non-interesting 

patterns 
Perhaps, however, the most important factor is none of 
the above; rather, it is the number of analysts, the amount 
of information they can analyze, and the organization of 
the analytical processes. 

 To analyze the effects of these factors on the likeli-
hood of detection we create an abstract model that cap-
tures the significant aspects of link discovery and analy-
sis while obscuring other details.  We imagine that every 
element of available data is an individual jigsaw puzzle 
piece with the picture obscured and that pieces from mul-
tiple puzzles arrive all mixed together.  Recognition of a 
puzzle (i.e., determination of its significance, modeled as 
the emergence of the picture) depends on obtaining a 
minimum number of pieces of the puzzle.  Puzzle pieces 
are assigned randomly and possibly repeatedly to ana-
lysts.  The model is depicted in Figure 1.  An analysis of 
this model can answer the following questions: 
x What is the probability that a person can solve a 

puzzle of interest (i.e., obtain enough pieces to 
recognize a particular picture)? 

x How does the solution probability depend on vari-
ous parameters such as the number and workload 
of analysts, the number of puzzles and of pieces 
per puzzle,  the number of pieces required to rec-
ognize a puzzle, and the number of interesting 
puzzles?  

x If analysts collaborate in teams, how does the so-
lution probability change? 

More formally, we assume that during a specified unit 
of time, there are N puzzles of size P, for a total of NP 
pieces.  Of these N puzzles, I are of interest, and N-I are 
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not.  S pieces are examined independently by each of A 
analysts.  Recognizing a puzzle requires a minimum of M 
pieces of that particular puzzle.  (There are obvious con-
straints between these parameters required for a sensible 
and useful interpretation, e.g., I<N, M<S, etc.)  Model 
parameters are summarized in Table 1. 

In this puzzle model, each piece represents an element 
of linked data.  The context-free nature of linked data is 
captured by the fact that there is no way of distinguishing 
the puzzle pieces a priori and that single puzzle pieces 
are not meaningful – only a “critical mass” of M related 
pieces enables the analyst to recognize the puzzle.  The 
ratio M/P captures the difficulty of detecting a pattern; 
the inverse may be thought of as the “pattern quality.”)  
The low signal-noise ratio – resulting from much cap-
tured data’s arising from uninteresting activities – is rep-
resented by the model’s characterization of interesting vs. 
non-interesting puzzles.  The signal (i.e., data of interest) 
corresponds to the IP interesting pieces; the noise to the 
NP-IP pieces of the uninteresting puzzles.  Analyst pro-
ductivity is modeled by the fact that the analyst only sees 
S puzzle pieces. 

Simplifying assumptions of the model are: 
x Puzzle sizes are identical 
x Information content of all pieces is identical – ig-

nores data quality issues 
x No additional structure besides pieces and puzzles 
x Probability of assignment of a piece to an analyst 

is random and uniformly distributed 
x Each piece is relevant to only a single puzzle 
x No redundant pieces received by an individual 

analyst – we use sampling without replacement 
x No “contradictory” pieces – corresponds to ignor-

ing data inconsistencies 
x Pieces are analyzed as a group; i.e., a batch proc-

ess.  Hence, issues such as data distribution over 
time and decay of memory are ignored. 

x Explicit modeling of the time or effort required to 
recognize puzzles is ignored. 

Despite these limitations the model yields useful insights. 
 

 
 
 
 
 
 
 
 
 

 
Figure 1 

 
 
 
 
 
 

2.0  Single-Analyst Link Discovery 
This section develops the mathematics behind the model 
for a single analyst and presents and discusses results of 
various experiments. 

2.1  Analysis  
The model is analyzed using counting arguments.  We 
first consider the simplest situation in which there is only 
one puzzle-solver (A = 1), and only one puzzle of interest 
(I = 1).  What is the probability that the analyst finds a 
solution? 

First, all possible ways in which S unique pieces can 
be sampled from the total number of pieces is: 

Using the fundamental counting principle [2], the number 
of distinct ways that M pieces from the single interesting 
puzzle can be chosen from all pieces is: 
 
      
 
The first term is the number of ways M pieces from the 
interesting puzzle can be chosen from its set of P pieces.  
The second gives the number of ways the remainder of 
puzzle pieces – the non-interesting pieces – can be cho-
sen, since the number of pieces in that set is NP-P, and 
the number of pieces picked from that set is  S-M. 

The puzzle can be solved, however, whenever at least 
M pieces from the puzzle of interest are drawn.  The 
number of ways this can happen is 
 
 
 
assuming that  M < S < P.  The first term in the sum is 
identical to Equation 3.  Each succeeding ith term gives 
the number of ways that M + i pieces from the interesting 
puzzle can be chosen from all pieces. 

The solution probability for A = I = 1 is then: 
 
 
 
 
 
 
Next we solve the more general case, allowing the puz-
zles of interest, I, to range inclusively from 1 to the total 
number of puzzles, N.  We continue to assume, however, 
that the number of analysts is 1 (A = 1).  To simplify the 
mathematics, we compute the complement of the solution 
probability, i.e., the probability that no puzzles can be 
solved, and then subtract this from 1 to get the actual 
solution probability. 

The ways that the number pieces per analyst (S) can be 
chosen such that no puzzle of interest can be solved is: 
 

 
Uninteresting 

Pieces 
Puzzle I 

Puzzle 1 

Analyst 3 

Analyst 1 

Analyst 2 

Analyst A 

Table 1:  Model Parameters 
N:  number of puzzles 
P:  pieces per puzzle 
I:  number of interesting puzzles 
A:  number of analysts 
S:  pieces per analyst 
M: puzzle recognition threshold  
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where 



Here, each term in the sum gives the number of ways that 
no puzzles of interest can be solved for a unique combi-
nation of pieces per puzzle of interest – i.e., fewer than 
M pieces of any puzzle of interest are present.  The I 
nested sums give all possible combinations for which this 
can be true, resulting in the total number of ways that no 
puzzle of interest can be solved. 

The probability that the analyst cannot solve any puz-
zle of interest is then: 
 
 
 
 
 
 
 
 
Hence, the solution probability – i.e. the probability that 
the analyst solves at least one puzzle of interest – is: 
 
Although Equation 7 gives a closed-form solution, its 
form is such that the solution behavior is difficult to in-
tuit.  Hence, we next present a set of experiments to show 
the solution probability’s characteristics. 

2.2  Experiments and Discussion 
In the following experiments, a range of parameter values 
is considered (Fig. 2).  They were chosen to roughly 
match real-world intelligence data characteristics.  Ana-
lysts can examine about 200 messages/day.  That number 
is used as a basis for S, which ranges from 200 to 5000, 
reflecting the number of “puzzle pieces” an analyst might 
see in a day, a week, and a month.   Message traffic vol-
ume is approximately 10,000 messages/day.  Assuming 
that a reasonable number of puzzles is 20 for small prob-
lems (and increasing that by a factor of 5 and 25 for me-
dium and large problems, continuing the day/week/month 
idea), the number of pieces per puzzle, P, must be fixed 
at 10,000/20 = 500. Finally, the puzzle recognition 
threshold is chosen at 25, which is 5% of the pieces of 
each puzzle, a fairly conservative estimate.  
 
 
 
 
 
 
 
 
 

Fig. 2.  Parameter ranges considered in experiments 

2.2.1  Methodology 
The following methodology was used: 
x Java code was written to compute the probabilities.  

BigInteger/BigDecimal datatypes were used to en-
sure sufficient accuracy in the computation. 

x Windows XP (1.4 GHz Intel Pentium 4 Mobile CPU, 
256MB RAM) was used to execute the code. 

x Wolfram Research’s Mathematica 4.0 were used to 
graph the results. Some of the axes are labeled oddly 
– e.g., “Number of Puzzles – 75” indicates that the 
axis’ scale range from 0 to 50 represents an actual 
Number of Puzzles  from 75 to 125. 

Only a subset of the experimental results is presented 
here due to space limitations. 

2.2.2 Puzzle Solution Probability vs. Noise 
Figure 3 depicts how the solution probability PS varies as 
the number of puzzles N increases while the other pa-
rameters are held constant, essentially displaying PS as 
noise increases.  Note that in this graph, PS is shown on a 
logarithmic scale. 
 
 
 
 
 
 
 
 
 
 
This experiment demonstrates how quickly PS falls as 
noise increases.  It suggests that collecting more data that 
do not contain the phenomena of interest will do more 
than simply obscure interesting patterns; it will break 
them apart into pieces too small to enable recognition. 

2.2.3 Signal vs. Noise 
In Figure 4, the total number of puzzles is varied along 
one dimension while the number of interesting puzzles is 
varied along another, showing how the solution probabil-
ity PS is affected by both these parameters. 

The graph shows that increasing the number of inter-
esting puzzles I tends to increase PS; however, this gain 
seems fairly slow.  In the other dimension, we once again 
see how quickly PS falls with increasing noise. 

Since increasing signal and noise clearly have opposite 
effects on PS, it is interesting to consider their relative 
effects on PS.  Due to the limited range of I in Figure 4, 
this tradeoff is difficult to see.  Figure 5 addresses this 
issue by plotting PS against the number of puzzles when 
the signal-to-noise ratio is constant. 
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Figure  8 

 
 
 
 
 
 
 
 
 
 
 
 
PS is plotted on a logarithmic scale; the graphs show that 
even if I varies linearly with N (i.e., constant sig-
nal/noise), PS falls extremely quickly.  The prior set of 
experiments (Figures 3-4) showed that the solution prob-
ability falls exponentially whenever extraneous data is 
introduced, given a fixed set of interesting data.  This 
experiment demonstrates the stronger result that this ex-
ponential decrease in link-discovery efficacy results as 
the data volume increases even when the proportion of 
interesting data remains constant. 

2.2.4 Signal vs. Number of Pieces per Puzzle 
To what extent does the number of pieces per puzzle P 
influence PS? If the recognition threshold M remains 
fixed, increasing P effectively reduces the proportion of 
the puzzle required to solve it, which should increase PS.  
Figure 6 graphs PS vs. P and I. 

We see that increasing P has an almost negligible ef-
fect, especially compared to I.  This result suggests that 
increasing the amount of data available to analysts, even 
if such an increase assumes that the number of interest-
ing and non-interesting puzzles is fixed, will not result in 
significant gains in link discovery performance.  More 
data about the same phenomena does not help much.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2.5 Signal vs. Pieces/Analyst 
As we have seen, PS increases with I.  We would expect 
the number of pieces per analyst S to have a similar ef-
fect, since increasing S means the analyst is exploiting a 
larger proportion of the total amount of information, but 
how do I and S compare against each other?  Figure 7 
shows that S dominates, causing faster growth in PS.  
Increasing I while keeping the total number of puzzles 

constant increases the signal to noise ratio, and essen-
tially amounts to decreasing the amount of irrelevant in-
formation available to the analyst – i.e., an increase in 
data relevance.  This experiment shows that in order to 
increase link discovery effectiveness, increasing the 
amount of data an analyst can process is more important 
than increasing data relevance. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.2.6 Noise vs. Pieces/Analyst 
Since S dominates signal, we now consider the question 
of S compared to noise.  Figure 8 shows that although S 
has a considerable affect on PS, PS is much more sensi-
tive to noise.  That is, the negative effects of extraneous 
data on link discovery will always overwhelm any gains 
that result from improved analyst data cognizance.   
Error! 
 
 
 
 
 
 
 
 
 
 
 
 

2.2.7 Data Volume vs. Pieces/Analyst 
From previous experiments we know that increasing data 
volume, even with a constant signal-to-noise ratio, de-
creases PS.  What if the pieces/analyst is increased?  
Does that offset the poor data-scaling performance of PS? 
Figure 9 shows that PS is much more sensitive to data 
volume than S.  As in earlier experiments, even when the 
proportion of relevant and irrelevant data remain fixed, 
any increase in the amount of available data has a power-
ful effect on PS – significantly more powerful than that of 
increasing S. 

2.2.8 Recognition Threshold vs. Pieces/Analyst 
One would expect PS to grow rapidly as the recognition 
threshold M decreases.  How does this decrease compare 
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with an increasing S, which (as previously seen) also 
causes PS to grow? 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10 shows that M is significantly more important 
than S.  This result suggests that efforts to reduce M are  
more valuable than efforts to increase S (or efforts to 
reduce noise, as previously shown).  Reducing M is 
somewhat analogous to increasing S and the pieces per 
puzzle, P.  Hence the dominance of M over S seems in-
tuitively clear. 
 Taken together the experiments show that the domi-
nant effect is the critical need to ensure that enough 
pieces sufficient for recognition will reach an individual 
analyst.  The breaking apart of a puzzle into groups too 
small for an individual analyst to recognize is what 
makes link discovery such a difficult analytical task.  
Conversely, technologies that can reassemble the puzzles, 
or at least group pieces likely to have come from the 
same puzzle in a way that enables them to be assigned to 
the same analyst, should be most valuable. 

3.0  Multiple-Analyst Link Discovery 
Link discovery is difficult for analysts working in isola-
tion because they cannot process enough data.  Hence, 
we now consider the case where multiple analysts at-
tempt to solve the puzzle problem by working in teams.  
An analysis of independent analysts is conducted, fol-
lowed by that of collaborating analysts. 

3.1  Multiple Independent Analysts 
The probability that all A analysts fail, assuming that 
they operate independently, is: 
 

where Pi equals PS for the ith analyst.  Figure 11 shows 
how PS scales with the number of analysts, assuming Pi 
for each analyst is 1%.  The function is strictly mono-
tonically increasing, which is a desirable characteristic.  
Adding manpower always results in higher levels of per-
formance, albeit with diminishing returns. 
 
 
 
 
 
 
 
 
 
 
However, it is infeasible to use multiple independent ana-
lysts as an LD strategy.  Consider the following: 

x 10 total puzzles (N = 10) 
x I = N/10 (1 puzzle of interest) 
x 1000 pieces per puzzle (P = 1000) 
x 200 pieces per analyst (S = 200) 
x Recognition threshold = P/20 (M = 50) 

This represents a relatively “easy” problem; puzzles of 
interest comprise a high percentage of the total (10%), 
the recognition threshold is only 5%, and analysts can see 
2% of the total amount of data.  These parameters give PS 
= 5.53x10-10.  Employing even 200 million analysts gives 
only a 10% probability of finding the puzzle of interest!   

3.2  Multiple Collaborating Analysts 
Modeling collaboration is difficult.  There are many vari-
ables to consider, such as group structure, the productiv-
ity and collaboration efficiency of individuals, and even 
possibly group political issues.  In this paper we model 
group collaboration at a high level of abstraction, allow-
ing us to encapsulate overall group behavior with a rela-
tively small set of parameters.  This top-down approach 
simplifies the collaborative analysis considerably, while 
still giving insight into the collaborative process. 

3.2.1  Analysis 
Assume that A analysts collaborate, giving a single “vir-
tual” analyst V with the following characteristics: 
x V can examine GAS pieces, where 1/A < G <= 1 
x V needs at least MH puzzle pieces to solve it, where 

1 <= H < A 
G and H are parameters that capture collaboration charac-
teristics, modeling both group efficiency and information 
transfer issues.  For instance, if the A analysts work to-
gether perfectly, with no information loss overhead from 
collaboration, the “work” that V can accomplish is A 
times greater than that of a single analyst;  i.e., V can 
analyze AS puzzle pieces, and has a puzzle recognition 
threshold of M.  If, on the other hand, the group is ex-
tremely unorganized and inefficient, the A analysts may 
be only slightly more productive than a single analyst. 

Figure  9 



Figure  12 

The use of the “virtual analyst” allows us to reuse the 
previous analysis by simply replacing S by GAS, and M 
by MH in Equations 6-7. 

We now continue the analysis by determining more 
precise expressions for G and H.  To do so, we introduce 
two additional collaboration parameters: 
x C: represents collaborative efficiency or information 

transfer gain; i.e., if a person can analyze a fixed 
amount of data in T time units, he can express that 
analysis to others in his collaborative group in only 
T/C time units, where C >= 1. 

x I: represents information transfer efficiency in the 
collaborative process, where   0 < I <= 1.  This pa-
rameter captures the observation that people don’t 
remember everything that they are told.  If, during a 
briefing, an analyst is given B bytes of information, 
he will recall only IB of it. 

We now generously assume that H = 1 (no collaboration 
overhead for the recognition threshold).  Also assume 
that the team is fully connected (analysts communicate 
with all other analysts) and that communication consists 
of broadcasts, which maximize communication effi-
ciency (vice analyst-to-analyst communication, for in-
stance).  Both assumptions are conservative.  If an ana-
lyst can perform a total of S units of work, and he spends 
G units of work on non-collaborative analysis, collabora-
tion requires that he spends: 
x G/C work units broadcasting information 
x G(A-1)/C work units receiving information 
Assume the analysts are 100% efficient: 

S=G+A(G/C)= G(C+A)/C 
and:  G = CS/(C+A) 

The total amount of information available to the group 
(puzzle pieces per virtual analyst, GAS) is essentially 
identical to the information available to individual ana-
lysts since the data is shared, and can be expressed as: 
GAS = G + GI(A-1)  (Eq. 10) 

The first factor, G, represents the amount of “personal” 
analysis completed by the analyst.  The second factor 
represents the amount of work completed by the others in 
the group that the analyst can actually remember. 

Combining these equations gives Equation 11: 
 
 
 
In the following experiments, we assume that 
 
 
where I0 is a constant.  The primary relevant characteris-
tic of this function is that it decreases with respect to A, 
as does its rate of change.  Although this assumption is 
arbitrary, it is chosen to be conservative.  Hence, as A 
increases, the marginal efficiency of I increases. 

3.2.2 Experiments and Discussion 
Figure 12 shows how PS varies with the number of col-
laborating analysts.  PS is shown on a logarithmic scale.  
Our collaboration model reveals an identical characteris-
tic shape under a variety of conditions: there is an opti-

mal collaborative group size.  As groups grow too large, 
the collaborative costs (even under the optimistic condi-
tions modeled in this paper) overwhelm the collaboration 
gain.  Collaborative effectiveness increases sharply as 
that optimal point is approached, and also decreases 
sharply after that point is passed.  Optimal group sizes 
vary based on puzzle and group characteristics.  For in-
stance, increasing collaboration efficiency results in a 
larger optimal group size as well as higher values for PS.  
Decreasing data transfer efficiency does not appear to 
have a major effect on the optimal group size, but does 
reduce PS significantly. 
 
 
 
 
 
 
 
 
 
 
 
 

4.0 Conclusions 
This paper has presented an abstract model of the link 
discovery problem, and has conducted closed-form prob-
abilistic solution analyses for both single-person and col-
laborative situations.  It shows that connecting the dots is 
an extremely difficult problem under the best of circum-
stances and that the difficulty arises primarily from the 
inability to identify related dots prior to assignment to 
individual analysts.  Even if analysts collaborate effec-
tively and efficiently, there is a natural limit to the ability 
to put together disparate clues into a coherent picture.  It 
suggests that technologies that enable larger amounts of 
data per analyst can have a high payoff. 
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