
A formal semantics for A formal semantics for 
ASN.1ASN.1

Paul Steckler
Galois
steck@galois.com



What is ASN.1?What is ASN.1?

• A data description language
• Describes the structure of data to be transmitted over wires 

(cf. XML schemas)
• Conventional collection of primitive data types: booleans, 

integers, strings, time types; plus enumerations, records, 
sum types

• Choice of several encoding schemes
• Specifications can span several modules
• Modules can be mutually-referential



ASN.1 is everywhereASN.1 is everywhere

Many IETF RFCs

X.509, SNMP, X.400, X.500

SSL/TLS

Code for ASN.1 types in every OS, browser



Example ASN.1 moduleExample ASN.1 module

MyModule
DEFINITIONS ::=
BEGIN
EXPORTS ALL;
IMPORTS;

T0 ::= [1] INTEGER
x T0 ::= 42

T2 ::= [2] BIT STRING { a(1), b(x), c(3) }
v2 T2 ::= c

END



Vision: High Assurance ASN.1 Vision: High Assurance ASN.1 
WorkbenchWorkbench

Design Validate

Specify

ASN.1
Interpreter

Platform-Independent
Protocol Messages

CMS, CMC, X.509, X.501…

Assured 
Implementation

Validate ASN.1 
implementations

Test cases/
harnesses

C or Java

Model 
checking

ASN.1
Tools

Verify ASN.1 
implementationsGenerate ASN.1 

implementations



Why a formal semantics?Why a formal semantics?

• Except for the grammar defining the syntax, ASN.1 is 
specified entirely in English 

• The ITU X.680 spec is mostly about syntax, not semantics
• Some of the subtleties are explained using examples in 

Annexes – not dispositive
• There's no reference implementation
• Potential for error if different compilers used for encoder 

and decoder



What to do with the semantics?What to do with the semantics?

Determine which ASN.1 specifications are legal

If not legal, why not
Give a meaning for a legal specification mean
Exposes subtleties and ambiguities



Who wants a semantics?Who wants a semantics?

Tool implementers
Users of ASN.1 tools
ASN.1 specification writers
ASN.1 standards writers
Galois 

Proof-of-concept compiler
Interpreter
Verifying compiler



What kind of semantics?What kind of semantics?

• Denotational semantics: mapping from source syntax to well-
understood mathematical meaning
– Meaning of a syntax phrase is compositional in the meaning of its

subphrases
• In an ASN.1 specification, the interesting phrases are type 

assignments, like

T1 ::= INTEGER { x(42) }

• And value assignments: 

v1 T1 ::= 5280



What are the denotations?What are the denotations?

An ASN.1 compiler generates an encoder and decoder for each defined 
type

So the semantics associates encoders and decoders with the types in 
type assignments



Compositionality of denotationsCompositionality of denotations

Meaning of aggregate types, such as SEQUENCE, depends on the 
meaning of their components

Meaning of a module is the union of the meanings for each type and 
value defined, producing  type and value environments for the module

Meaning of a set of modules is the union of the meaning of the 
modules, yielding global type and value environments



Formal semantics: precedentsFormal semantics: precedents

R5RS, the last-published standard for Scheme, contained a
denotational semantics for the lambda-calculus core
The Standard ML programming language has had two 
versions of a formal semantics (1990, revised in 1997)

The ML Kit started as a direct implementation of the 
formal semantics
Compiler implementers can use the Kit as a check on 
their work, and a vehicle for experimentation



Scope of the semanticsScope of the semantics

The semantics covers a subset of ASN.1:

X.680 only;  no parameterization, no information objects, no general 
constraints
No extensibility for enumerations, SEQUENCE, etc.
No XML
Supported types: BOOLEAN, INTEGER, ENUMERATED, BIT STRING, 
OCTET STRING, NULL, SEQUENCE/OF, SET/OF, CHOICE, OBJECT 
IDENTIFIER, RELATIVE-OID,  most strings, time types
Constraints: single value, range, size



The rest of the talkThe rest of the talk

What does the semantics look like?
How the semantics handles encoding rules
Ambiguities and infelicities
Type and value compatibility
Status



Denotations in codeDenotations in code

• ASN.1 syntax maps to Haskell expressions
– An executable specification!

• We already have a representation of ASN.1 syntax from 
proof-of-concept compiler; some other recycled code 

• Advantage of Haskell: the type system documents our logic 
and checks our work

• Meaning of a type assignment is an encoder / decoder 
pair, i.e., a pair of Haskell functions (plus some other 
administrative data)



Semantics for BOOLEANSemantics for BOOLEAN

mk_en_de_bool :: MkEnDe   
mk_en_de_bool = MkEnDe $ pairFuns mk_en_bool mk_de_bool
where
mk_en_bool tags = Encoder $ 

\(ASN1Boolean b) -> 
DataStream [(tags,PrimDatum $ PrimBool b)]

mk_de_bool tags = Decoder $
(\ds -> case headDataStream ds of

(tags',PrimDatum (PrimBool b))                                        | tags == 
tags' 

-> Just (ASN1Boolean b,tailDataStream ds)
_   -> Nothing)



Semantics for SEQUENCESemantics for SEQUENCE
seqTyMeaning asn1Envs tyNm ty mp synTags ctls =
case ctls of
SimpleComponents comTys ->

checkedMaybe (distinctElts $ map comTyNm comTys)
(do
compEnvs <- getComponentEnvs asn1Envs mp comTys
Just $ mkSequenceCoders asn1Envs mp tyNm ty synTags 

compEnvs)
...

getComponentEnvs :: ASN1_Envs -> ModuleParameters -> 
[ComponentType] -> Maybe [ComponentEnv]

mkSequenceCoders :: ASN1_Envs -> ModuleParameters ->
IdentType -> Type -> [SyntacticTag] -> [ComponentEnv] ->
TypeEnv



Semantics of a moduleSemantics of a module

-- | meaning of a single module
moduleMeaning :: ASN1_Envs -> ModuleDefinition -> 
Maybe ASN1_Envs

moduleMeaning asn1Envs md =
moduleBodyMeaning asn1Envs mb mp
where
mb = moduleBody md
mp = moduleParmsFromModule md

Input environments are global; result is for this module only



Solving for environments Solving for environments 

The global environments input includes the per-module 
environments

For a single module, the input and output is the same environment 
pair

moduleMeaning :: 

ASN1_Envs -> ModuleDefinition -> Maybe ASN1_Envs

Haskell's lazy evaluation allows such recursive definitions



Other data in type environmentsOther data in type environments

The encoder/decoder pairs are parameterized over lists of 
tags

We associate lists of tags for each type:

T1 ::= [1][2][42] INTEGER
T2 ::= [18] T1

When encoding a T2 value, there are five tags to deal with

We also store any constraints associated with a type, to 
check values to be encoded, or the results of decoding



Alternative representations?Alternative representations?

• Semantics should be a resource for ASN.1 users and 
implementers

• For broader dissemination, we could express the semantics 
as conventional mathematics

• A big job – about 5000 Haskell LOC
• For development, Haskell is type-checked, and it's 

executable



Abstracting over encodingsAbstracting over encodings

• There are several sets of rules for encoding types (BER, DER, 
PER, XER); plus roll-your-own encodings

• We split the semantics into encoding-independent and 
encoding-specific layers

• In the encoding-independent layer, we produce abstract 
encodings, which we call data streams
• No octets



Example data streamExample data stream

Given the type assignment

T1 ::= [101] BOOLEAN

here's the encoding of the value TRUE:

DataStream [ ([SemanticTag {semTagValue = ContextTag 101,
semTagApp = TaggedExplicit},

SemanticTag {semTagValue = UniversalTag BooleanTag,
semTagApp = TaggedExplicit}],

PrimDatum (PrimBool True))]

This is human-readable, unlike an octet list



A more complicated data streamA more complicated data stream
Given the type 

SEQUENCE { foo INTEGER, bar BOOLEAN }

the encoding of { foo 42, bar TRUE } yields:

DataStream 
[([SemanticTag {semTagValue = UniversalTag SequenceTag,
semTagApp = TaggedExplicit}],

AggregateToken SequenceToken),
([SemanticTag {semTagValue = UniversalTag IntegerTag,

semTagApp = TaggedExplicit}],
PrimDatum (PrimInteger 42)),

([SemanticTag {semTagValue = UniversalTag BooleanTag,
semTagApp = TaggedExplicit}],

PrimDatum (PrimBool True))]



From abstract to concreteFrom abstract to concrete

Encodings are a vital part of the semantics of ASN.1
An abstract data stream contains all the information we need to 
produce octets for any encoding (that's the goal, at least)
Some information could be lost when going to the concrete level

•For example, IMPLICIT tags overwrite other tags, so we 
couldn't recapture the original abstract data stream from 
octets alone

We've implemented a translation between abstract data streams 
and DER

•We build decoder when encoding, so no information is lost



Type/value compatibilityType/value compatibility

• X.680 Annex B contains complicated notions of “identical 
type definitions” and “value mappings” between types

Not clear how to use these concepts, except from examples
Are examples exhaustive?

• Semantics uses a more principled notion of type and value 
compatibility



Type/value compatibility, cont.Type/value compatibility, cont.

a T1 ::= v -- v is some value notation
b T2 ::= a
c T3 ::= b

we assess

- the value/type compatibility of v and T1
- the value/type compatibility of v and T2
- the value/type compatibility of v and T3
- the type/type  compatibility of T1 and T2
- the type/type  compatibility of T2 and T3



Type/value compatibility, cont.Type/value compatibility, cont.

c ---> b ---> a ::= v
|      |      |
T3 :>  T2 :>  T1

where :> means 
“there's at least one instance of the RH 

type that can be mapped to the LH type”



Even more principled ...Even more principled ...

We're working on a set of inference-rule style type rules

Effectively the same as the code in the semantics, more 
elegantly presented

To be shared between semantics and interpreter 
implementation



LacunaeLacunae
Check that each type is instantiable, i.e., has at least one 
finite instance

Consider:

T1 ::= SEQUENCE { x BOOLEAN, y T1 }
– Only infinite values in this case
– Uninstantiability can be more subtle

Algorithm by Rinderknecht could be added to semantics

We're not checking that values appearing in a constraint 
contains at least one value denoted by the parent type:

INTEGER (15..42) (11..14)



StatusStatus
Coded, reviewed at Galois, outside semantics expert
Tests:

Manual tests of each data type
Automatically generated tests, including multiple modules
Round-trip = encode/decode tests

Review of semantics against X.680, clause-by-clause
Semantics is annotated with relevant sections of X.680 

Using semantics as a reference implementation for 
interpreter testing

– Tried large number of QuickCheck-generated modules
– Automated test harness



TODOTODO

Add support for more of ASN.1 to semantics

Use implementation of type inference rules

Check for type instantiability


	A formal semantics for ASN.1
	What is ASN.1?
	ASN.1 is everywhere
	Example ASN.1 module
	Vision: High Assurance ASN.1 Workbench
	Why a formal semantics?
	What to do with the semantics?
	Who wants a semantics?
	What kind of semantics?
	What are the denotations?
	Compositionality of denotations
	Formal semantics: precedents
	Scope of the semantics
	The rest of the talk
	Denotations in code
	Semantics for BOOLEAN
	Semantics for SEQUENCE
	Semantics of a module
	Solving for environments
	Other data in type environments
	Alternative representations?
	A more complicated data stream
	From abstract to concrete
	Type/value compatibility
	Type/value compatibility, cont.
	Type/value compatibility, cont.
	Even more principled ...
	Lacunae
	Status
	TODO

