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• Cost of incorrect software is extremely high. 

• Formal verification can increase software quality. 

• Programs never run in isolation. 

• Program analysis should not be done in isolation.

• We need to analyze: 

‣ Libraries included by the program 
- E.g., stdlib.h 

‣ Low-level operating system routines  
- E.g., system call services 

‣ Hardware protection mechanisms 
- E.g., memory protection via segmentation and paging
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Specification:  
Copy data x from linear (virtual) memory location 
l0 to disjoint linear memory location l1.
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Verification Objective:  
After a successful copy, l0 and l1 contain x.
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Specification:  
Copy data x from linear (virtual) memory location 
l0 to disjoint linear memory location l1.

xl1

Verification Objective:  
After a successful copy, l0 and l1 contain x.

Implementation:  
Include the copy-on-write technique: l0 and l1 
can be mapped to the same physical memory 
location p. 

‣ System calls 
‣ Modifications to address mapping 
‣ Access control management

xp

Physical 
Memory
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Goal:  Build robust tools to increase software reliability 

‣ Verify critical properties of application and system programs 
‣ Correctness with respect to behavior, security, & resource usage 

Approach: Machine-code verification for x86 platforms 

Plan of Action: 

1. Build a formal, executable x86 ISA model using ACL2 
- Includes a specification of segmentation and paging (new this year!) 

2. Develop a machine-code analysis framework based on this model 
3. Employ this framework to verify application and system programs
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Focus: Specifying and Reasoning about IA-32e Paging

• System program verification differs from application program 
verification. 
‣ Access to a larger machine state 
‣ Based on physical memory 
‣ Many data structures to maintain simple interfaces to applications

• Linear memory is an abstraction provided by paging data structures.

• Paging data structures control: 
‣ virtualization: translation from linear to physical address 
‣ memory protection: access rights (r/w/x) 
‣ memory typing
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All AMD manuals: ~3000 pages

x86 ISA Model Development
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Obtaining the x86 ISA Specification

~3400 pages

__asm__ volatile 
("stc\n\t"                   // Set CF. 
 "mov $0, %%eax\n\t"         // Set EAX = 0. 
 "mov $0, %%ebx\n\t"         // Set EBX = 0. 
 "mov $0, %%ecx\n\t"         // Set ECX = 0. 
 "mov %4, %%ecx\n\t"         // Set CL = rotate_by. 
 "mov %3, %%edx\n\t"         // Set EDX = old_cf = 1. 
 "mov %2, %%eax\n\t"         // Set EAX = num. 
 "rcl %%cl, %%al\n\t"        // Rotate AL by CL.  
 "cmovb %%edx, %%ebx\n\t"    // Set EBX = old_cf if CF = 1.  
                             // Otherwise, EBX = 0.  
 "mov %%eax, %0\n\t"         // Set res = EAX. 
 "mov %%ebx, %1\n\t"         // Set cf  = EBX. 
  
 : "=g"(res), "=g"(cf)    
 : "g"(num), "g"(old_cf), "g"(rotate_by)   
 : "rax", "rbx", "rcx", "rdx"); 

Running tests on x86 machines
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How can we know that our model faithfully represents the x86 ISA? 

Validate the model to increase trust in the applicability of formal analysis.
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• The x86 ISA model supports 100+ instructions (~220 opcodes) 

‣ Exceptions: some FP and SIMD instructions 
‣ Can execute “real” programs emitted by GCC/LLVM 
‣ Successfully co-simulated a contemporary SAT solver on our model 

• IA-32e paging for all page configurations (4K, 2M, 1G) 

• Segment-based addressing 

• Simulation speed*:  

‣ ~3.3 million instructions/second (paging disabled) 
‣ ~330,000 instructions/second (with 1G pages) 

• Verification of several x86 application programs

* Simulation speed measured on an Intel Xeon E31280 CPU @ 3.50GHz
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But, linear memory is an abstraction! 
Does paging (h/w + s/w) provide this non-interference property?
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Paging: A Brief Introduction

13

• Linear address space is divided into pages; an OS tracks these pages via 
hierarchical data structures. 

• For every linear memory access, these structures are “walked” to obtain: 

‣ corresponding physical address 
‣ access rights 
‣ memory type 

• A page-fault exception is generated if: 

‣ the required page is located in secondary storage 
‣ the access rights do not permit the memory access
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Formal Specification of x86 Paging

16

Formal model of components in the x86 state: 

‣ Physical memory (252 bytes) 

‣ Registers 

- Control Registers: cr0, cr3, cr4 
- Model-Specific Register: ia32_efer

Specification functions that access and update paging entries: 

‣ Base address of the next data structure or page frame 
‣ Fields related to page protection  

- User/supervisor, read/write, execute, etc.

Specification functions that recognize well-formed paging entries and structures
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Formal Specification of a Linear Memory Read
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lin-mem-read(l-addr, x86): 

[ err?, p-addr, x86] := la-to-pa(l-addr, x86) 

if (err?) then 

go to exception handling routine 

else 

val := read-mem(p-addr, x86) 

return(val, x86) 

end if



/32UT Austin | Goel & Hunt

Formal Specification of a Linear Memory Write

18

lin-mem-write(l-addr, val, x86): 

[ err?, p-addr, x86] := la-to-pa(l-addr, x86) 

if (err?) then 

go to exception handling routine 

else 

x86 := write-mem(p-addr, val, x86) 

return(x86) 

end if
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(define la-to-pa-page-table 
  ((lin-addr  :type (signed-byte   #.*max-linear-address-size*)) 
   (base-addr :type (unsigned-byte #.*physical-address-size*)) 
   (u-s-acc   :type (unsigned-byte  1)) 
   (wp        :type (unsigned-byte  1)) 
   (smep      :type (unsigned-byte  1)) 
   (nxe       :type (unsigned-byte  1)) 
   (r-w-x     :type (member  :r :w :x)) 
   (cpl       :type (unsigned-byte  2)) 
   (x86)) 

  (b* ((p-entry-addr 
        (the (unsigned-byte #.*physical-address-size*) 
          (page-table-entry-addr lin-addr base-addr))) 
       (entry (the (unsigned-byte 64) (rm-low-64 p-entry-addr x86))) 

       (page-present (page-tables-slice :p entry)) 
       ((when (equal page-present 0))         
        (let ((err-no (page-fault-err-no 
                       page-present r-w-x cpl 
                       0      ;; rsvd 
                       smep 1 ;; pae 
                       nxe))) 
          (page-fault-exception lin-addr err-no x86))) 
       (read-write      (page-tables-slice :r/w entry)) 
       (user-supervisor (page-tables-slice :u/s entry)) 
       (execute-disable (page-tables-slice :xd  entry)) 

       (rsvd 
        (mbe 
         :logic 
         (if (or 
              (not (equal 
                    (part-select entry :low 
                                 *physical-address-size* :high 62) 
                    0)) 
              (and (equal nxe 0) 
                   (not (equal (pte-4K-page-slice :pte-xd entry) 
                               0)))) 
             1 0) 
         :exec 
         (if (or 
              (not (equal (logand (+ -1 (ash 1 (+ 63 (- #.*physical-address-size*)))) 
                                  (the (unsigned-byte 28) 
                                    (ash entry (- #.*physical-address-size*)))) 
                          0)) 
              (and (equal nxe 0) 
                   (not (equal 
                         (the (unsigned-byte 1) 
                           (logand 1 
                                   (the (unsigned-byte 1) 
                                     (ash entry (- 63))))) 
                         0)))) 
             1 0))) 

       ((when (equal rsvd 1)) 
        (let ((err-no (page-fault-err-no page-present 
                                         r-w-x 
                                         cpl 
                                         rsvd 
                                         smep 
                                         1 ;; pae 
                                         nxe))) 
          (page-fault-exception lin-addr err-no x86))) 

       ((when (or (and (equal r-w-x :r) 
                       (if (< cpl 3) 
                           nil 
                         (equal user-supervisor 0))) 
                  (and (equal r-w-x :w) 
                       (if (< cpl 3) 
                           (and (equal wp 1) 
                                (equal read-write 0)) 
                         (or (equal user-supervisor 0) 
                             (equal read-write 0)))) 
                  (and (equal r-w-x :x) 
                       (if (< cpl 3) 
                           (if (equal nxe 0) 
                               (and (equal smep 1) 
                                    (equal u-s-acc 1) 
                                    (equal user-supervisor 1)) 
                             (if (equal smep 0) 
                                 (equal execute-disable 1) 
                               (or (equal execute-disable 1) 
                                   (and (equal u-s-acc 1) 
                                        (equal user-supervisor 1))))) 
                         (or (equal user-supervisor 0) 
                             (and (equal nxe 1) 
                                  (equal execute-disable 1))))))) 
        (let ((err-no (page-fault-err-no page-present 
                                         r-w-x 
                                         cpl 
                                         rsvd 
                                         smep 
                                         1 ;; pae 
                                         nxe))) 
          (page-fault-exception lin-addr err-no x86))) 

       ;; No errors, so we proceed with the address translation. 

The Reality: Walking the “Lowest” Structure
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       ;; Get accessed and dirty bits: 
       (accessed        (page-tables-slice :a entry)) 
       (dirty           (page-tables-slice :d entry)) 
       ;; Compute accessed and dirty bits: 
       (entry (if (equal accessed 0) 
                  (!page-tables-slice :a 1 entry) 
                entry)) 
       (entry (if (and (equal dirty 0) 
                       (equal r-w-x :w)) 
                  (!page-tables-slice :d 1 entry) 
                entry)) 
       ;; Update x86 (to reflect accessed and dirty bits change), if needed: 
       (x86 (if (or (equal accessed 0) 
                    (and (equal dirty 0) 
                         (equal r-w-x :w))) 
                (wm-low-64 p-entry-addr entry x86) 
              x86))) 

      ;; Return address of 4KB page frame and the modified x86 state. 
      (mv nil 

          (mbe 

           :logic 
           (part-install 
            (part-select lin-addr :low 0 :high 11) 
            (ash (pte-4K-page-slice :pte-page entry) 12) 
            :low 0 :high 11) 

           :exec 
           (the (unsigned-byte #.*physical-address-size*) 
             (logior 
              (the (unsigned-byte #.*physical-address-size*) 
                (logand 
                 (the (unsigned-byte #.*physical-address-size*) 
                   (ash 
                    (the (unsigned-byte 40) 
                      (logand (the (unsigned-byte 40) 1099511627775) 
                              (the (unsigned-byte 52) 
                                (ash (the (unsigned-byte 64) entry) 
                                     (- 12))))) 
                    12)) 
                 -4096)) 
              (the (unsigned-byte 12) 
                (logand 4095 lin-addr))))) 
          x86)))

The Reality: Walking the “Lowest” Structure
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       ;; Get accessed and dirty bits: 
       (accessed        (page-tables-slice :a entry)) 
       (dirty           (page-tables-slice :d entry)) 
       ;; Compute accessed and dirty bits: 
       (entry (if (equal accessed 0) 
                  (!page-tables-slice :a 1 entry) 
                entry)) 
       (entry (if (and (equal dirty 0) 
                       (equal r-w-x :w)) 
                  (!page-tables-slice :d 1 entry) 
                entry)) 
       ;; Update x86 (to reflect accessed and dirty bits change), if needed: 
       (x86 (if (or (equal accessed 0) 
                    (and (equal dirty 0) 
                         (equal r-w-x :w))) 
                (wm-low-64 p-entry-addr entry x86) 
              x86))) 

      ;; Return address of 4KB page frame and the modified x86 state. 
      (mv nil 

          (mbe 

           :logic 
           (part-install 
            (part-select lin-addr :low 0 :high 11) 
            (ash (pte-4K-page-slice :pte-page entry) 12) 
            :low 0 :high 11) 

           :exec 
           (the (unsigned-byte #.*physical-address-size*) 
             (logior 
              (the (unsigned-byte #.*physical-address-size*) 
                (logand 
                 (the (unsigned-byte #.*physical-address-size*) 
                   (ash 
                    (the (unsigned-byte 40) 
                      (logand (the (unsigned-byte 40) 1099511627775) 
                              (the (unsigned-byte 52) 
                                (ash (the (unsigned-byte 64) entry) 
                                     (- 12))))) 
                    12)) 
                 -4096)) 
              (the (unsigned-byte 12) 
                (logand 4095 lin-addr))))) 
          x86)))

There are FOUR  
more specification 
functions that are used to 
specify la-to-pa.

The Reality: Walking the “Lowest” Structure
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Linear Memory Non-Interference Theorem
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let  

[y, x861]    := lin-mem-read(la-1, x86)  

x862         := lin-mem-write(la-2, x, x86)    
[yʹ, x863]   := lin-mem-read(la-1, x862) 

then 

y == yʹ

R: y
linear 
memory

la-1 la-2

W(x)

x y
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Non-Interference: Paging Data Structure Entries
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[Theorem] 

Irrespective of the state of the accessed and dirty flags, walking a paging 
data structure entry will not affect any operation that occurs at another 
entry.



Source: Intel Manuals, Vol. 3

Accessed and Dirty Flags
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Non-Interference: Paging Data Structure Entries
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[Theorem] 

Irrespective of the state of the accessed and dirty flags, walking a paging 
data structure entry will not affect any operation that occurs at another 
entry.

Involves: 

1. Formulating predicates that recognize valid paging entries and walks 

2. Reasoning about non-interference of paging data structures 

3. Reasoning about non-interference of sub-fields of each paging entry
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Properties of Paging Data Structures and Entries

29

Two main lessons: 

1. Separate on-the-fly updates from traversals 

2. Find patterns and stick to them — helps with automation!

We have proved ~400 general theorems about paging data structures and 
their entries.
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• Formulate and prove other critical properties of paging structures 

• Verify system programs that access and modify paging structures 

‣ E.g., optimized data-copy program

Short-term Goals:
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• Formulate and prove other critical properties of paging structures 

• Verify system programs that access and modify paging structures 

‣ E.g., optimized data-copy program

Short-term Goals:

Long-term Goals:

• Simulate a mainstream system, i.e., FreeBSD, on our x86 ISA model 

‣ Support I/O devices 

• Verify OS routines 

‣ Functional behavior 
‣ Security 
‣ Resource Usage



/32UT Austin | Goel & Hunt

Conclusion

31

Verification of programs should take low-level “details” into account. 

Unvalidated abstractions == dangerously inaccurate assumptions
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Our Approach
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Machine-code verification for x86 platforms
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Why not high-level code verification? 

X High-level verification frameworks do not address compiler bugs 

✓ Verified/verifying compilers can help 

X Need to build verification frameworks for many high-level languages 

X Sometimes, high-level code is unavailable

Machine-code verification for x86 platforms
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Our Approach

34

Why not high-level code verification? 

X High-level verification frameworks do not address compiler bugs 

✓ Verified/verifying compilers can help 

X Need to build verification frameworks for many high-level languages 

X Sometimes, high-level code is unavailable

Why x86? 

✓ x86 is in widespread use — our approach will have immediate practical 
application

Machine-code verification for x86 platforms



Under active development: an x86 ISA model in ACL2

Model Development

➡ Instruction Semantic 
Functions: specify the effect 
of each instruction

➡ Step Function: fetches, 
decodes, and executes one 
instruction 

➡ x86 State:  specifies the 
components of the ISA 
(registers, flags, memory)



Under active development: an x86 ISA model in ACL2

Model Development

➡ Instruction Semantic 
Functions: specify the effect 
of each instruction

➡ Step Function: fetches, 
decodes, and executes one 
instruction 

➡ x86 State:  specifies the 
components of the ISA 
(registers, flags, memory)

Optimized for 
reasoning 
efficiency

Optimized for 
execution 
efficiency

Layered modeling approach mitigates 
the trade-off between reasoning and 
execution efficiency [ACL2’13]  



Verification Effort vs. Verification Utility

System-level ModeProgrammer-level Mode

- Verification of application 
programs 

- Linear memory address space     
(264 bytes) 

- Assumptions about correctness of 
OS operations

- Verification of system programs 

- Physical memory address space  
(252 bytes) 

- No assumptions about OS 
operations



Verification Effort vs. Verification Utility



Lemma Database

• Semantics of the program is given by the effect it has on the machine 
state.
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Lemma Database

• Semantics of the program is given by the effect it has on the machine 
state.

• Need to reason about: 
‣ Reads from machine state 
‣ Writes to machine state

add %edi, %eax 
je  0x400304 

1. read instruction from mem 

2. read operands 

3. write sum to eax 

4. write new value to flags 

5. write new value to pc

1. read instruction from mem 

2. read flags  

3. write new value to pc

• Three kinds of theorems: 
‣ Read-over-Write Theorems 
‣ Write-over-Write Theorems 
‣ Preservation Theorems
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valid-address-p(i) ⋀ 
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