
6th May, 2015

A Formal Specification of
x86 Memory Management

The University of Texas at Austin

HCSS 2015

Shilpi Goel
shigoel@cs.utexas.edu

Warren A. Hunt, Jr.
hunt@cs.utexas.edu

/32UT Austin | Goel & Hunt 2

Outline

๏ Motivation

๏ Project Overview

๏ IA-32e Paging

‣ Specification

‣ Verification

๏ Future Work

๏ Conclusion

/32UT Austin | Goel & Hunt

Motivation

3

• Cost of incorrect software is extremely high.

• Formal verification can increase software quality.

• Programs never run in isolation.

• Program analysis should not be done in isolation.

/32UT Austin | Goel & Hunt

Motivation

3

• Cost of incorrect software is extremely high.

• Formal verification can increase software quality.

• Programs never run in isolation.

• Program analysis should not be done in isolation.

• We need to analyze:

‣ Libraries included by the program
- E.g., stdlib.h

‣ Low-level operating system routines
- E.g., system call services

‣ Hardware protection mechanisms
- E.g., memory protection via segmentation and paging

/32UT Austin | Goel & Hunt

xl0

Linear
Memory

Example: Analysis of a Data-Copy Program

4

Specification:
Copy data x from linear (virtual) memory location
l0 to disjoint linear memory location l1.

/32UT Austin | Goel & Hunt

xl0

Linear
Memory

Example: Analysis of a Data-Copy Program

4

Specification:
Copy data x from linear (virtual) memory location
l0 to disjoint linear memory location l1.

xl1

/32UT Austin | Goel & Hunt

xl0

Linear
Memory

Example: Analysis of a Data-Copy Program

4

Specification:
Copy data x from linear (virtual) memory location
l0 to disjoint linear memory location l1.

xl1

Verification Objective:
After a successful copy, l0 and l1 contain x.

/32UT Austin | Goel & Hunt

xl0

Linear
Memory

Example: Analysis of a Data-Copy Program

4

Specification:
Copy data x from linear (virtual) memory location
l0 to disjoint linear memory location l1.

xl1

Verification Objective:
After a successful copy, l0 and l1 contain x.

Implementation:
Include the copy-on-write technique: l0 and l1
can be mapped to the same physical memory
location p.

‣ System calls
‣ Modifications to address mapping
‣ Access control management

xp

Physical
Memory

/32UT Austin | Goel & Hunt

Our Goal

5

Goal: Build robust tools to increase software reliability

‣ Verify critical properties of application and system programs
‣ Correctness with respect to behavior, security, & resource usage

Approach: Machine-code verification for x86 platforms

Plan of Action:

1. Build a formal, executable x86 ISA model using ACL2
- Includes a specification of segmentation and paging (new this year!)

2. Develop a machine-code analysis framework based on this model
3. Employ this framework to verify application and system programs

/32UT Austin | Goel & Hunt

Our Goal

5

Goal: Build robust tools to increase software reliability

‣ Verify critical properties of application and system programs
‣ Correctness with respect to behavior, security, & resource usage

Approach: Machine-code verification for x86 platforms

Plan of Action:

1. Build a formal, executable x86 ISA model using ACL2
- Includes a specification of segmentation and paging (new this year!)

2. Develop a machine-code analysis framework based on this model
3. Employ this framework to verify application and system programs

/32UT Austin | Goel & Hunt

Focus of this Talk

6

• System program verification differs from application program
verification.
‣ Access to a larger machine state
‣ Based on physical memory
‣ Many data structures to maintain simple interfaces to applications

/32UT Austin | Goel & Hunt

Focus of this Talk

6

• System program verification differs from application program
verification.
‣ Access to a larger machine state
‣ Based on physical memory
‣ Many data structures to maintain simple interfaces to applications

• Linear memory is an abstraction provided by paging data structures.

/32UT Austin | Goel & Hunt

Focus of this Talk

6

• System program verification differs from application program
verification.
‣ Access to a larger machine state
‣ Based on physical memory
‣ Many data structures to maintain simple interfaces to applications

• Linear memory is an abstraction provided by paging data structures.

• Paging data structures control:
‣ virtualization: translation from linear to physical address
‣ memory protection: access rights (r/w/x)
‣ memory typing

/32UT Austin | Goel & Hunt

Focus of this Talk

6

Focus: Specifying and Reasoning about IA-32e Paging

• System program verification differs from application program
verification.
‣ Access to a larger machine state
‣ Based on physical memory
‣ Many data structures to maintain simple interfaces to applications

• Linear memory is an abstraction provided by paging data structures.

• Paging data structures control:
‣ virtualization: translation from linear to physical address
‣ memory protection: access rights (r/w/x)
‣ memory typing

/32UT Austin | Goel & Hunt 7

Outline

๏ Motivation

๏ Project Overview

๏ IA-32e Paging

‣ Specification

‣ Verification

๏ Future Work

๏ Conclusion

/32UT Austin | Goel & Hunt

All AMD manuals: ~3000 pages

x86 ISA Model Development

8

Obtaining the x86 ISA Specification

~3400 pages

__asm__ volatile
("stc\n\t" // Set CF.
 "mov $0, %%eax\n\t" // Set EAX = 0.
 "mov $0, %%ebx\n\t" // Set EBX = 0.
 "mov $0, %%ecx\n\t" // Set ECX = 0.
 "mov %4, %%ecx\n\t" // Set CL = rotate_by.
 "mov %3, %%edx\n\t" // Set EDX = old_cf = 1.
 "mov %2, %%eax\n\t" // Set EAX = num.
 "rcl %%cl, %%al\n\t" // Rotate AL by CL.
 "cmovb %%edx, %%ebx\n\t" // Set EBX = old_cf if CF = 1.
 // Otherwise, EBX = 0.
 "mov %%eax, %0\n\t" // Set res = EAX.
 "mov %%ebx, %1\n\t" // Set cf = EBX.

 : "=g"(res), "=g"(cf)
 : "g"(num), "g"(old_cf), "g"(rotate_by)
 : "rax", "rbx", "rcx", "rdx");

Running tests on x86 machines

/32UT Austin | Goel & Hunt

x86 ISA Model Validation

9

How can we know that our model faithfully represents the x86 ISA?

Validate the model to increase trust in the applicability of formal analysis.

/32UT Austin | Goel & Hunt

x86 ISA Model: Current Status

10

• The x86 ISA model supports 100+ instructions (~220 opcodes)

‣ Exceptions: some FP and SIMD instructions
‣ Can execute “real” programs emitted by GCC/LLVM
‣ Successfully co-simulated a contemporary SAT solver on our model

• IA-32e paging for all page configurations (4K, 2M, 1G)

• Segment-based addressing

• Simulation speed*:

‣ ~3.3 million instructions/second (paging disabled)
‣ ~330,000 instructions/second (with 1G pages)

• Verification of several x86 application programs

* Simulation speed measured on an Intel Xeon E31280 CPU @ 3.50GHz

/32UT Austin | Goel & Hunt 11

Outline

๏ Motivation

๏ Project Overview

๏ IA-32e Paging

‣ Specification

‣ Verification

๏ Future Work

๏ Conclusion

/32UT Austin | Goel & Hunt

Linear Memory Non-Interference Theorem

12

linear
memory

la-1 la-2

y

Program
Order

/32UT Austin | Goel & Hunt

Linear Memory Non-Interference Theorem

12

linear
memory

la-1 la-2

y

Program
Order

R: y

/32UT Austin | Goel & Hunt

Linear Memory Non-Interference Theorem

12

linear
memory

la-1 la-2

y

Program
Order

/32UT Austin | Goel & Hunt

Linear Memory Non-Interference Theorem

12

linear
memory

la-1 la-2

W(x)

x y

Program
Order

/32UT Austin | Goel & Hunt

Linear Memory Non-Interference Theorem

12

R: y

linear
memory

la-1 la-2

W(x)

x y

Program
Order

/32UT Austin | Goel & Hunt

Linear Memory Non-Interference Theorem

12

R: y

linear
memory

la-1 la-2

W(x)

x y

Program
Order

But, linear memory is an abstraction!
Does paging (h/w + s/w) provide this non-interference property?

/32UT Austin | Goel & Hunt

Paging: A Brief Introduction

13

• Linear address space is divided into pages; an OS tracks these pages via
hierarchical data structures.

• For every linear memory access, these structures are “walked” to obtain:

‣ corresponding physical address
‣ access rights
‣ memory type

• A page-fault exception is generated if:

‣ the required page is located in secondary storage
‣ the access rights do not permit the memory access

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

SEGMENTATION

Segment
 Selector

Logical Address

Offset

Linear Addr.

Segment

4K Page

Address Translations on x86 Machines

IA-32e PAGING (4K page)

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

SEGMENTATION

Segment
 Selector

Logical Address

Offset

Linear Addr.

Segment

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

4K Page

Address Translations on x86 Machines

IA-32e PAGING (4K page)

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

SEGMENTATION

Segment
 Selector

Logical Address

Offset

Linear Addr.

Segment

CR3

PML4E

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

Physical
Memory

4K Page

Control Register
has the base address
of these structures.

Address Translations on x86 Machines

IA-32e PAGING (4K page)

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

SEGMENTATION

Segment
 Selector

Logical Address

Offset

Linear Addr.

Segment

CR3

PML4E

PDPTE

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

Physical
Memory

4K Page

Control Register
has the base address
of these structures.

Address Translations on x86 Machines

IA-32e PAGING (4K page)

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

SEGMENTATION

Segment
 Selector

Logical Address

Offset

Linear Addr.

Segment

CR3

PML4E

PDPTE

PDE

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

Physical
Memory

4K Page

Control Register
has the base address
of these structures.

Address Translations on x86 Machines

IA-32e PAGING (4K page)

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

SEGMENTATION

Segment
 Selector

Logical Address

Offset

Linear Addr.

Segment

CR3

PML4E

PDPTE

PDE

PTE

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

Physical
Memory

4K Page

Control Register
has the base address
of these structures.

Address Translations on x86 Machines

IA-32e PAGING (4K page)

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

SEGMENTATION

Segment
 Selector

Logical Address

Offset

Linear Addr.

Segment

CR3

PML4E

PDPTE

PDE

PTE

Physical Addr.

4K Page

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

Physical
Memory

4K Page

Control Register
has the base address
of these structures.

Address Translations on x86 Machines

IA-32e PAGING (4K page)

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

SEGMENTATION

Segment
 Selector

Logical Address

Offset

Linear Addr.

Segment

CR3

PML4E

PDPTE

PDE

PTE

Physical Addr.

4K Page

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

Physical
Memory

4K Page

Control Register
has the base address
of these structures.

a

a

a

a

a
accessed
flag

Address Translations on x86 Machines

IA-32e PAGING (4K page)

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

SEGMENTATION

Segment
 Selector

Logical Address

Offset

Linear Addr.

Segment

CR3

PML4E

PDPTE

PDE

PTE

Physical Addr.

4K Page

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

Physical
Memory

4K Page

Control Register
has the base address
of these structures.

a

a

a

a

a
accessed
flag

Address Translations on x86 Machines

d

dirty
flag

d

IA-32e PAGING (4K page)

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

SEGMENTATION

Segment
 Selector

Logical Address

Offset

Linear Addr.

Segment

CR3

PML4E

PDPTE

PDE

PTE

Physical Addr.

4K Page

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

Physical
Memory

4K Page

Control Register
has the base address
of these structures.

a

a

a

a

a
accessed
flag

Address Translations on x86 Machines

d

dirty
flag

d

Source: Intel Manuals, Vol. 3

Accessed and Dirty Flags

/32UT Austin | Goel & Hunt

Formal Specification of x86 Paging

16

Formal model of components in the x86 state:

‣ Physical memory (252 bytes)

‣ Registers

- Control Registers: cr0, cr3, cr4
- Model-Specific Register: ia32_efer

/32UT Austin | Goel & Hunt

Formal Specification of x86 Paging

16

Formal model of components in the x86 state:

‣ Physical memory (252 bytes)

‣ Registers

- Control Registers: cr0, cr3, cr4
- Model-Specific Register: ia32_efer

Specification functions that access and update paging entries:

‣ Base address of the next data structure or page frame
‣ Fields related to page protection

- User/supervisor, read/write, execute, etc.

/32UT Austin | Goel & Hunt

Formal Specification of x86 Paging

16

Formal model of components in the x86 state:

‣ Physical memory (252 bytes)

‣ Registers

- Control Registers: cr0, cr3, cr4
- Model-Specific Register: ia32_efer

Specification functions that access and update paging entries:

‣ Base address of the next data structure or page frame
‣ Fields related to page protection

- User/supervisor, read/write, execute, etc.

Specification functions that recognize well-formed paging entries and structures

/32UT Austin | Goel & Hunt

Formal Specification of a Linear Memory Read

17

lin-mem-read(l-addr, x86):

[err?, p-addr, x86] := la-to-pa(l-addr, x86)

if (err?) then

go to exception handling routine

else

val := read-mem(p-addr, x86)

return(val, x86)

end if

/32UT Austin | Goel & Hunt

Formal Specification of a Linear Memory Write

18

lin-mem-write(l-addr, val, x86):

[err?, p-addr, x86] := la-to-pa(l-addr, x86)

if (err?) then

go to exception handling routine

else

x86 := write-mem(p-addr, val, x86)

return(x86)

end if

/32UT Austin | Goel & Hunt 19

(define la-to-pa-page-table
 ((lin-addr :type (signed-byte #.*max-linear-address-size*))
 (base-addr :type (unsigned-byte #.*physical-address-size*))
 (u-s-acc :type (unsigned-byte 1))
 (wp :type (unsigned-byte 1))
 (smep :type (unsigned-byte 1))
 (nxe :type (unsigned-byte 1))
 (r-w-x :type (member :r :w :x))
 (cpl :type (unsigned-byte 2))
 (x86))

 (b* ((p-entry-addr
 (the (unsigned-byte #.*physical-address-size*)
 (page-table-entry-addr lin-addr base-addr)))
 (entry (the (unsigned-byte 64) (rm-low-64 p-entry-addr x86)))

 (page-present (page-tables-slice :p entry))
 ((when (equal page-present 0))
 (let ((err-no (page-fault-err-no
 page-present r-w-x cpl
 0 ;; rsvd
 smep 1 ;; pae
 nxe)))
 (page-fault-exception lin-addr err-no x86)))
 (read-write (page-tables-slice :r/w entry))
 (user-supervisor (page-tables-slice :u/s entry))
 (execute-disable (page-tables-slice :xd entry))

 (rsvd
 (mbe
 :logic
 (if (or
 (not (equal
 (part-select entry :low
 physical-address-size :high 62)
 0))
 (and (equal nxe 0)
 (not (equal (pte-4K-page-slice :pte-xd entry)
 0))))
 1 0)
 :exec
 (if (or
 (not (equal (logand (+ -1 (ash 1 (+ 63 (- #.*physical-address-size*))))
 (the (unsigned-byte 28)
 (ash entry (- #.*physical-address-size*))))
 0))
 (and (equal nxe 0)
 (not (equal
 (the (unsigned-byte 1)
 (logand 1
 (the (unsigned-byte 1)
 (ash entry (- 63)))))
 0))))
 1 0)))

 ((when (equal rsvd 1))
 (let ((err-no (page-fault-err-no page-present
 r-w-x
 cpl
 rsvd
 smep
 1 ;; pae
 nxe)))
 (page-fault-exception lin-addr err-no x86)))

 ((when (or (and (equal r-w-x :r)
 (if (< cpl 3)
 nil
 (equal user-supervisor 0)))
 (and (equal r-w-x :w)
 (if (< cpl 3)
 (and (equal wp 1)
 (equal read-write 0))
 (or (equal user-supervisor 0)
 (equal read-write 0))))
 (and (equal r-w-x :x)
 (if (< cpl 3)
 (if (equal nxe 0)
 (and (equal smep 1)
 (equal u-s-acc 1)
 (equal user-supervisor 1))
 (if (equal smep 0)
 (equal execute-disable 1)
 (or (equal execute-disable 1)
 (and (equal u-s-acc 1)
 (equal user-supervisor 1)))))
 (or (equal user-supervisor 0)
 (and (equal nxe 1)
 (equal execute-disable 1)))))))
 (let ((err-no (page-fault-err-no page-present
 r-w-x
 cpl
 rsvd
 smep
 1 ;; pae
 nxe)))
 (page-fault-exception lin-addr err-no x86)))

 ;; No errors, so we proceed with the address translation.

The Reality: Walking the “Lowest” Structure

/32UT Austin | Goel & Hunt 20

 ;; Get accessed and dirty bits:
 (accessed (page-tables-slice :a entry))
 (dirty (page-tables-slice :d entry))
 ;; Compute accessed and dirty bits:
 (entry (if (equal accessed 0)
 (!page-tables-slice :a 1 entry)
 entry))
 (entry (if (and (equal dirty 0)
 (equal r-w-x :w))
 (!page-tables-slice :d 1 entry)
 entry))
 ;; Update x86 (to reflect accessed and dirty bits change), if needed:
 (x86 (if (or (equal accessed 0)
 (and (equal dirty 0)
 (equal r-w-x :w)))
 (wm-low-64 p-entry-addr entry x86)
 x86)))

 ;; Return address of 4KB page frame and the modified x86 state.
 (mv nil

 (mbe

 :logic
 (part-install
 (part-select lin-addr :low 0 :high 11)
 (ash (pte-4K-page-slice :pte-page entry) 12)
 :low 0 :high 11)

 :exec
 (the (unsigned-byte #.*physical-address-size*)
 (logior
 (the (unsigned-byte #.*physical-address-size*)
 (logand
 (the (unsigned-byte #.*physical-address-size*)
 (ash
 (the (unsigned-byte 40)
 (logand (the (unsigned-byte 40) 1099511627775)
 (the (unsigned-byte 52)
 (ash (the (unsigned-byte 64) entry)
 (- 12)))))
 12))
 -4096))
 (the (unsigned-byte 12)
 (logand 4095 lin-addr)))))
 x86)))

The Reality: Walking the “Lowest” Structure

/32UT Austin | Goel & Hunt 20

 ;; Get accessed and dirty bits:
 (accessed (page-tables-slice :a entry))
 (dirty (page-tables-slice :d entry))
 ;; Compute accessed and dirty bits:
 (entry (if (equal accessed 0)
 (!page-tables-slice :a 1 entry)
 entry))
 (entry (if (and (equal dirty 0)
 (equal r-w-x :w))
 (!page-tables-slice :d 1 entry)
 entry))
 ;; Update x86 (to reflect accessed and dirty bits change), if needed:
 (x86 (if (or (equal accessed 0)
 (and (equal dirty 0)
 (equal r-w-x :w)))
 (wm-low-64 p-entry-addr entry x86)
 x86)))

 ;; Return address of 4KB page frame and the modified x86 state.
 (mv nil

 (mbe

 :logic
 (part-install
 (part-select lin-addr :low 0 :high 11)
 (ash (pte-4K-page-slice :pte-page entry) 12)
 :low 0 :high 11)

 :exec
 (the (unsigned-byte #.*physical-address-size*)
 (logior
 (the (unsigned-byte #.*physical-address-size*)
 (logand
 (the (unsigned-byte #.*physical-address-size*)
 (ash
 (the (unsigned-byte 40)
 (logand (the (unsigned-byte 40) 1099511627775)
 (the (unsigned-byte 52)
 (ash (the (unsigned-byte 64) entry)
 (- 12)))))
 12))
 -4096))
 (the (unsigned-byte 12)
 (logand 4095 lin-addr)))))
 x86)))

There are FOUR
more specification
functions that are used to
specify la-to-pa.

The Reality: Walking the “Lowest” Structure

/32UT Austin | Goel & Hunt

Linear Memory Non-Interference Theorem

21

let

[y, x861] := lin-mem-read(la-1, x86)

x862 := lin-mem-write(la-2, x, x86)
[yʹ, x863] := lin-mem-read(la-1, x862)

then

y == yʹ

R: y
linear
memory

la-1 la-2

W(x)

x y

/32UT Austin | Goel & Hunt

Non-Interference: Paging Data Structure Entries

22

[Theorem]

Irrespective of the state of the accessed and dirty flags, walking a paging
data structure entry will not affect any operation that occurs at another
entry.

Source: Intel Manuals, Vol. 3

Accessed and Dirty Flags

/32UT Austin | Goel & Hunt

Non-Interference: Paging Data Structure Entries

24

[Theorem]

Irrespective of the state of the accessed and dirty flags, walking a paging
data structure entry will not affect any operation that occurs at another
entry.

/32UT Austin | Goel & Hunt

Non-Interference: Paging Data Structure Entries

24

[Theorem]

Irrespective of the state of the accessed and dirty flags, walking a paging
data structure entry will not affect any operation that occurs at another
entry.

Involves:

1. Formulating predicates that recognize valid paging entries and walks

2. Reasoning about non-interference of paging data structures

3. Reasoning about non-interference of sub-fields of each paging entry

/32UT Austin | Goel & Hunt 25

valid-address-p(i) ⋀

valid-x86-p(x86)
⇒
valid-value-p() ⋀

valid-x86-p(x86)

Linear Memory Preservation Theorems

reading from a valid x86 state

Ri: x

writing to a valid x86 state

Wi(x)

valid-address-p(i) ⋀

valid-value-p(x) ⋀

valid-x86-p(x86)
⇒
valid-x86-p()

linear
memory

x

i

/32UT Austin | Goel & Hunt 26

Linear Memory Interference Theorem

linear
memory

i

Program
Order

/32UT Austin | Goel & Hunt 26

Linear Memory Interference Theorem

Wi(x) linear
memory

x

i

Program
Order

/32UT Austin | Goel & Hunt 26

Linear Memory Interference Theorem

Wi(x)

Ri: x

linear
memory

x

i

Program
Order

/32UT Austin | Goel & Hunt 27

Linear Memory Write-over-Write Theorem: #1

linear
memory

independent writes commute safely

i j

Program
Order

/32UT Austin | Goel & Hunt 27

Linear Memory Write-over-Write Theorem: #1

linear
memory

independent writes commute safely

Wi(x)

i j

x

Program
Order

/32UT Austin | Goel & Hunt 27

Linear Memory Write-over-Write Theorem: #1

linear
memory

independent writes commute safely

Wi(x)

i j

x y

Wj(y)

Program
Order

/32UT Austin | Goel & Hunt 27

Linear Memory Write-over-Write Theorem: #1

=

linear
memory

independent writes commute safely

linear
memory

Wi(x)

i j

x y

Wj(y)

i j

Program
Order

Program
Order

/32UT Austin | Goel & Hunt 27

Linear Memory Write-over-Write Theorem: #1

=

linear
memory

independent writes commute safely

linear
memory

Wi(x)

i j

x y

Wj(y)

i j

Wj(y)

y

Program
Order

Program
Order

/32UT Austin | Goel & Hunt 27

Linear Memory Write-over-Write Theorem: #1

=

linear
memory

independent writes commute safely

linear
memory

Wi(x)

i j

x y

Wj(y)

i j

Wj(y)

Wi(x)

x y

Program
Order

Program
Order

/32UT Austin | Goel & Hunt 28

Linear Memory Write-over-Write Theorem: #2

linear
memory

visibility of writes

i

Program
Order

/32UT Austin | Goel & Hunt 28

Linear Memory Write-over-Write Theorem: #2

linear
memory

visibility of writes

Wi(x)

i

x

Program
Order

/32UT Austin | Goel & Hunt 28

Linear Memory Write-over-Write Theorem: #2

linear
memory

visibility of writes

Wi(x)

i

Wi(y)

y

Program
Order

/32UT Austin | Goel & Hunt 28

Linear Memory Write-over-Write Theorem: #2

=

linear
memory

visibility of writes

linear
memory

Wi(x)

i

Wi(y)

i

y

Program
Order

Program
Order

/32UT Austin | Goel & Hunt 28

Linear Memory Write-over-Write Theorem: #2

=

linear
memory

visibility of writes

linear
memory

Wi(x)

i

Wi(y)

i

Wi(y)

y

y

Program
Order

Program
Order

/32UT Austin | Goel & Hunt

Properties of Paging Data Structures and Entries

29

Two main lessons:

1. Separate on-the-fly updates from traversals

2. Find patterns and stick to them — helps with automation!

We have proved ~400 general theorems about paging data structures and
their entries.

/32UT Austin | Goel & Hunt

Future Work

30

• Formulate and prove other critical properties of paging structures

• Verify system programs that access and modify paging structures

‣ E.g., optimized data-copy program

Short-term Goals:

/32UT Austin | Goel & Hunt

Future Work

30

• Formulate and prove other critical properties of paging structures

• Verify system programs that access and modify paging structures

‣ E.g., optimized data-copy program

Short-term Goals:

Long-term Goals:

• Simulate a mainstream system, i.e., FreeBSD, on our x86 ISA model

‣ Support I/O devices

• Verify OS routines

‣ Functional behavior
‣ Security
‣ Resource Usage

/32UT Austin | Goel & Hunt

Conclusion

31

Verification of programs should take low-level “details” into account.

Unvalidated abstractions == dangerously inaccurate assumptions

Thanks!
Questions/Comments?

A Formal Specification of
x86 Memory Management

6th May, 2015

The University of Texas at Austin

HCSS 2015

Shilpi Goel
shigoel@cs.utexas.edu

Warren A. Hunt, Jr.
hunt@cs.utexas.edu

Extra Slides

6th May, 2015 HCSS 2015

/32UT Austin | Goel & Hunt

Our Approach

34

Machine-code verification for x86 platforms

/32UT Austin | Goel & Hunt

Our Approach

34

Why not high-level code verification?

X High-level verification frameworks do not address compiler bugs

✓ Verified/verifying compilers can help

X Need to build verification frameworks for many high-level languages

X Sometimes, high-level code is unavailable

Machine-code verification for x86 platforms

/32UT Austin | Goel & Hunt

Our Approach

34

Why not high-level code verification?

X High-level verification frameworks do not address compiler bugs

✓ Verified/verifying compilers can help

X Need to build verification frameworks for many high-level languages

X Sometimes, high-level code is unavailable

Why x86?

✓ x86 is in widespread use — our approach will have immediate practical
application

Machine-code verification for x86 platforms

Under active development: an x86 ISA model in ACL2

Model Development

➡ Instruction Semantic
Functions: specify the effect
of each instruction

➡ Step Function: fetches,
decodes, and executes one
instruction

➡ x86 State: specifies the
components of the ISA
(registers, flags, memory)

Under active development: an x86 ISA model in ACL2

Model Development

➡ Instruction Semantic
Functions: specify the effect
of each instruction

➡ Step Function: fetches,
decodes, and executes one
instruction

➡ x86 State: specifies the
components of the ISA
(registers, flags, memory)

Optimized for
reasoning
efficiency

Optimized for
execution
efficiency

Layered modeling approach mitigates
the trade-off between reasoning and
execution efficiency [ACL2’13]

Verification Effort vs. Verification Utility

System-level ModeProgrammer-level Mode

- Verification of application
programs

- Linear memory address space
(264 bytes)

- Assumptions about correctness of
OS operations

- Verification of system programs

- Physical memory address space
(252 bytes)

- No assumptions about OS
operations

Verification Effort vs. Verification Utility

Lemma Database

• Semantics of the program is given by the effect it has on the machine
state.

Lemma Database

• Semantics of the program is given by the effect it has on the machine
state.

add %edi, %eax
je 0x400304

Lemma Database

• Semantics of the program is given by the effect it has on the machine
state.

add %edi, %eax
je 0x400304

1. read instruction from mem

2. read operands

3. write sum to eax

4. write new value to flags

5. write new value to pc

Lemma Database

• Semantics of the program is given by the effect it has on the machine
state.

add %edi, %eax
je 0x400304

1. read instruction from mem

2. read operands

3. write sum to eax

4. write new value to flags

5. write new value to pc

1. read instruction from mem

2. read flags

3. write new value to pc

Lemma Database

• Semantics of the program is given by the effect it has on the machine
state.

• Need to reason about:
‣ Reads from machine state
‣ Writes to machine state

add %edi, %eax
je 0x400304

1. read instruction from mem

2. read operands

3. write sum to eax

4. write new value to flags

5. write new value to pc

1. read instruction from mem

2. read flags

3. write new value to pc

• Three kinds of theorems:
‣ Read-over-Write Theorems
‣ Write-over-Write Theorems
‣ Preservation Theorems

Read-over-Write Theorem: #1

y

memory

non-interference

Program
Order i j

Read-over-Write Theorem: #1

y

Wi(x) memory

non-interference

Program
Order

x

i j

Read-over-Write Theorem: #1

y

Wi(x)

Rj: y

memory

non-interference

Program
Order

x

i j

Read-over-Write Theorem: #2

memory

i

overlap

Program
Order

Read-over-Write Theorem: #2

Wi(x) memory

x

i

overlap

Program
Order

Read-over-Write Theorem: #2

Wi(x)

Ri: x

memory

x

i

overlap

Program
Order

Write-over-Write Theorem: #1

memory

independent writes commute safely

i j

Program
Order

Write-over-Write Theorem: #1

memory

independent writes commute safely

Wi(x)

i j

x

Program
Order

Write-over-Write Theorem: #1

memory

independent writes commute safely

Wi(x)

i j

x y

Wj(y)

Program
Order

Write-over-Write Theorem: #1

=

memory

independent writes commute safely

memory

Wi(x)

i j

x y

Wj(y)

i j

Program
Order

Program
Order

Write-over-Write Theorem: #1

=

memory

independent writes commute safely

memory

Wi(x)

i j

x y

Wj(y)

i j

Wj(y)

y

Program
Order

Program
Order

Write-over-Write Theorem: #1

=

memory

independent writes commute safely

memory

Wi(x)

i j

x y

Wj(y)

i j

Wj(y)

Wi(x)

x y

Program
Order

Program
Order

Write-over-Write Theorem: #2

memory

visibility of writes

i

Program
Order

Write-over-Write Theorem: #2

memory

visibility of writes

Wi(x)

i

x

Program
Order

Write-over-Write Theorem: #2

memory

visibility of writes

Wi(x)

i

Wi(y)

y

Program
Order

Write-over-Write Theorem: #2

=

memory

visibility of writes

memory

Wi(x)

i

Wi(y)

i

y

Program
Order

Program
Order

Write-over-Write Theorem: #2

=

memory

visibility of writes

memory

Wi(x)

i

Wi(y)

i

Wi(y)

y

y

Program
Order

Program
Order

valid-address-p(i) ⋀

valid-x86-p(x86)
⇒
valid-value-p() ⋀

valid-x86-p(x86)

Preservation Theorems

reading from a valid x86 state

Ri: x

memory

x

i

valid-address-p(i) ⋀

valid-x86-p(x86)
⇒
valid-value-p() ⋀

valid-x86-p(x86)

Preservation Theorems

reading from a valid x86 state

Ri: x

writing to a valid x86 state

Wi(x)

valid-address-p(i) ⋀

valid-value-p(x) ⋀

valid-x86-p(x86)
⇒
valid-x86-p()

memory

x

i

