

A High-Assurance Partitioned Development Environment

David Greve and Matthew Wilding

Rockwell Collins Advanced Technology Center Cedar Rapids, IA {dagreve, mmwildin}@rockwellcollins.com

John Launchbury and Peter White

Galois Connections, Inc.

HCSS 03 April 2003

Rockwell Collins

Advanced Communication and Aviation Equipment

- Air Transport, Business, Regional, and Military Markets
- \$2.5 Billion in Sales

Headquartered in Cedar Rapids, IA

- 17,000 Employees Worldwide
- Advanced Technology Center
 - Advanced Computing Systems

Advanced Technology Center

Advanced Technology Center

- The Advanced Technology Center (ATC) identifies, acquires, develops and transitions value-driven technologies to support the continued growth of Rockwell Collins.
- The Advanced Computing Systems department addresses emerging technologies for high assurance computing systems with particular emphasis on embedded systems.
- The **Formal Methods Center of Excellence** applies mathematical tools and reasoning to the problem of producing high assurance systems.

Advanced Technology Center

HCSS 03 – April 2003

Integrated Modular Avionics

- Intrinsic Partitioning
- Partitioning for Security
- Formal Verification
- AAMP7 Development Environment

"Security is about separation Comp; uters are about sharing"

-Brian Snow, Dept. of Defense April 1, 2003

One Computer System For Each Unique Function

- Autopilot
- Flight Management
- Displays

Firewalls Key Management Encryption

Limited Dependencies Between Functions

- Exchange of Sensor and Control Data
- Provides Strong Functional Isolation
- System Certification
 - All Components Considered Together
 - Verification of Components Acting Together
 - "You don't certify a single application, you certify an entire system"

One Computer System For Many Distinct Functions

- Leverage Improved Computing Capability
- Reduce Hardware Related Costs

Incremental Certification

- Functions verified ONCE, INDEPENDENTLY, and only to the LEVEL APPROPRIATE to their criticality
 MILS
- Composition of functions retains individual certification
- Crucial for IMA

What About Functional Interaction?

- No longer physically isolated
- Without isolation, must consider interaction
- PARTITIONING provides necessary isolation

Partitioning

• Partitioning

- Isolating, both in space and in time, two or more functions executing concurrently on the same computer system
- Enables composition of two or more previously distinct functions onto a single computer system

Isolation

- Spatial
 - Memory management unit
 - Provides Read/Write protection between partitions
- Temporal
 - Periodic Partition switching
 - Watchdog Timer

If You Can Keep Them Separate (Partitioning) Then You Can Bring Them Together (Composition)

Conceptual System Composition

Legacy

Modernized

Real-Time Partitioning Considerations

Partition Latency

- Time Between Successive Executions of a Given Partition
- Can Be Minimized by Increasing Partition Switch Rate

Partition Switch Overhead

- Processor Activity Associated with Partition Context Switching
- Limits Maximum Partition Switch Rate

Interrupts

- Interrupts Cannot Change Partition Time Allocations
- Interrupts Must Be Partitioned, Too.

- Integrated Modular Avionics
- Intrinsic Partitioning
- Partitioning for Security
- Formal Verification
- Development Environment

- Intrinsic Partitioning
 - Computing Platform Enforces Data Isolation
 - Technique Pioneered by Rockwell Collins, ATC
 - Provides Real-Time Performance
 - Addresses IMA Concerns

Multi-Tasking OS

Micro Kernel Partitioning

Intrinsic Partitioning

Intrinsic Partitioning

Micro-Coded Partitioning Kernel

- Minimal Code, Functionality, and State
- Analyzable, Fast, and Efficient

Simple Data Structures

- Supports "Virtual Machine" Partitioning
 - Each Partition Has Its Own Operating System
- Hierarchical Scheduling

Dedicated Interrupts

- Partition Switch Interrupt
- Power Down Warning Interrupt
- Access Violation Interrupt
- ABORT (Mild Reset)
- Partition-Aware Interrupts

Supports High Assurance, Evaluatable Architectures

Partition Management Unit Architecture

Intrinsic Partitioning Implemented In JEM1

- functionality enforced with off-chip Partition Management Unit (PMU)

• PMU Designed into AAMP7 microprocessor

Advanced Technology Center

HCSS 03 – April 2003

- Integrated Modular Avionics
- Intrinsic Partitioning
- Partitioning for Security
- Formal Verification
- Development Environment

Separation Kernel

Concept First Published in 1980's

- Building Block for Secure Systems
- Decomposes Challenge of Building Secure System
 - Allows Applications to Enforce and Manage Own Security Policy
- Provides High Assurance Separation

Effective Security Policies Must Be

- Always Invoked
- Non-Bypassable
- Tamper Proof
- Evaluatable

Separation Kernels Support Security Policies with

- Information Flow Control
- Data Isolaton
- Sanitization (Periods Processing)

Application Level Security Policy

Security Kernel Services

IMA very similar to MILS

- Originally Relied on Physical Separation, Now on Partitioning
- Isolation of Concerns: Incremental Certification
- Intrinsic Partitioning is a "Separation Kernel" designed into the processing platform
 - Separation as a System Design Philosophy

Formal Analysis

- Mandated for Highest Security Certifications
- Intrinsic Partitioning Designed with Formal Verification in Mind
 - Limited Functionality, Limited Problem Scope
- Lowest Level Implementation
 - Independent of Software
 - Simplest Level to Implement/Verify Separation

- Integrated Modular Avionics
- Intrinsic Partitioning
- Partitioning for Security
- Formal Verification
- Development Environment

Formal Process

Formal Process

- Process Adheres to Conventional or Accepted Methods or Standards
- Specific Steps are Taken, Specific Documentation is Produced

Rigorous Process

- Forces Attention to Easily Overlooked Details

Not "Formal Methods"

Complementary Concepts

Formal Methods

Formal Methods

- Discipline in which Mathematical Reasoning is Applied to the **Development or Verification of Computer Systems**
- Formal Languages
 - Rigorously Defined Syntax and Semantics (Meaning)
- Formal Tools
 - Computer Programs that Manipulate Formal Languages
 - Employ Logic and Rules of Inference
- **Rigorous Specification**
 - Forces Attention to Easily Overlooked Details
- Part of Formal Process
 - DO-178B
 - Alternative Means
 - Common Criteria
 - **Required Part of Certification Process**

X < X + 1

Formal Techniques

Formal Specification

- Rigorous Mathematical Description of System
- Many Formal Languages/Tools
 - Manipulated by Computational Means

Formal Validation

Consistency and Completeness

Formal Synthesis

- Derivation of Implementation from Specification
 - Kestrel, Derivation Reasoning Systems

Formal Verification

- Proof of Correspondence Between Implementation and Specification
- Mechanical Proof Systems
 - Model Checkers, Equivalence Checkers
 - Theorem Provers (PVS, HOL, ACL2, etc.)

Rockwell Collins Formal Methods History

- FY94: Microcode correctness for AAMP5 (*NASA Langley*)
- FY96: Microcode correctness for AAMP-FV (NASA Langley)
- FY97-99 Avionics Application Partitioning (DARPA)
- FY98: High-Speed Executable Formal Model of the JEM1 (IR&D)
- FY99: Autopilot Mode Confusion (NASA Langley)
- FY99-01: CAPS Analysis (IR&D)
- FY02-FY03: AAMP7 partitioning analysis (IR&D)

CAPS Analysis (microcode correctness proofs)

Rockwell Collins' microcode verification work presented Tuesday.

Formalized Separation Kernel Security Policy

Informal Security Policy

- Information Flow Control
- Data Isolation
- Sanitization

Need for Formalize

- Precise Mathematical Description
- Suitable for Formal Analysis

Formal Security Policy

- Infiltration
- Exfiltration
- Mediation

(No) Infiltration

ACL2-checked Proofs

- Currently connecting Implementation Model to Security Policy using the ACL2 theorem proving system
- Prior Rockwell Collins FM Work Crucial
 - Schedule
 - Capability

- Integrated Modular Avionics
- Intrinsic Partitioning
- Partitioning for Security
- Formal Verification
- Application Development Environment

Development Environment Project Overview

- Integrated Modular Avionics
 - Safety-Critical Avionics Integration Concept
- Intrinsic Partitioning
 - "Separation Kernel" in a MILS Computing Platform
- Partitioning for Security
 - Application-Level Firewalls Supported
- Formal Verification
 - Provides High Assurance Intrinsic Partitioning
- AAMP7 development environment
 - Supports high-assurance application development exploiting intrinsic partitioning