
A Language of Life: Characterizing People
using Cell Phone Tracks

Alexy Khrabrov and George Cybenko
{alexy,gvc}@dartmouth.edu
Thayer School of Engineering

Dartmouth College
8000 Cummings Hall
Hanover, NH 03755

Abstract—Mobile devices can produce continuous streams of
data which are often specific to the person carrying them. We
show that cell phone tracks from the MIT Reality dataset can be
used to reliably characterize individual people. This is done by
treating each person’s data as a separate language by building
a standard n-gram language model for each “author.” We then
compute the perplexities of an unlabelled sample as based on
each person’s language model. The sample is assigned to the
user yielding the lowest perplexity score. This technique achieves
85% precision and can also be used for clustering. We also
show how language models can also be used for predicting
movement and propose metrics to measure the accuracy of
the predictions. Finally, we develop an alternative method for
identifying individuals by counting the subsequences in a sample
which are unique to their authors. This is done by building a
generalized suffix tree of the training set and counting each
subsequence from a sample which is unique for some person
as evidence towards identifying that person as the author. We
present the identification and prediction as a part of a HUMBLE
human behavior modelling framework, outline general modelling
goals, and show how our methods help. Our results suggest
that people’s medium-scale movement behavioral patterns, at the
granularity of cell tower footprints, can be used to characterize
individuals.

I. INTRODUCTION

With the widespread adoption of mobile telecommunica-
tions devices and the networks to support them, there now exist
continuous data streams emitted by many people throughout
the day. Most notably, when mobile phones move through a
cellular network, the IDs of the cell towers tracking the phone
can be recorded as a timestamped integer sequence. Similar
ID sequences can be produced by a smart card moving near
readers, as a series of reader IDs – recording, for example, the
trajectory of an employee’s badge through a secure building,
a passenger through a smart transportation system, and so on.
With many such trajectories available over time, the ques-

tion arises of the uniqueness, regularity, and predictability
of people’s movements as based on those trajectories. We
address the problem of identifying individuals based solely on
a subsequence of cell tower observation records. We develop
two methods of identification from a sensor data stream, and
also show how one model can be used for prediction. We
place these methods in a larger context of human behavior
modelling, and propose a framework for reasoning about such

modelling, with identification and prediction forming the basis.
Future work, naturally completing the framework, is discussed.
We present identification and prediction techniques for

behaviors captured in the MIT Reality dataset [2]. In that
dataset, about 100 subjects, MIT students and faculty, were
given cell phones with tracking software, recording, among
other data, their cell locations and times of calls.

II. PREVIOUS WORK

Author identification from symbol sequences was treated
before in the literary authorship context – Markov models were
applied to character alphabets, with good results [10]. Suffix
trees were used for finding member-unique subsequences in a
collection of sequences in bioinformatics, for selecting primers
[8]. Corpus fertility was introduced by the first author and
others in [13]. Metrics for similarity between sequences using
suffix trees are proposed in [16]. Gonzalez et al. [5] show that
people are generally fixed in their way and exhibit patterns of
mobility in cell phone network.

III. HUMAN BEHAVIOR MODELLING FRAMEWORK
This work is a part of the Human Behavior Modelling

project, (HUMBLE), developed at Thayer School of Engineer-
ing, Dartmouth College [17], for integrating and generaliz-
ing various techniques for modelling, representing and using
human behaviors as inferred from sensor data. The main
purposes of human behavioral modelling in this framework
are as follows:

• Characterize - The ability to identify unique individuals
or classify them robustly.

• Identify Change - The ability to detect significant changes
in the behavior of an individual.

• Predict - The ability to predict future behaviors based on
observed past behaviors.

In this paper, we focus on the first challenge (character-
ization), briefly explore the third (prediction), and outline
our plans for the second (change detection). Characterization
can be seen as a classification problem, and we start with
it in a very strict sense – as identification of a class of
one. Specifically, given a sample sequence produced by an
unidentified person from our set of subjects, we seek to
identify the person who produced it.



TABLE I
AVERAGE DURATIONS OF THE SAMPLES, FOR GIVEN SAMPLE SIZES.

sequence length 10 20 50 100
duration 41 min 81 min 3.4 hours 6.8 hours

It takes less than an hour to gather a characteristic sequence from an
average person.

IV. CELL PHONE TRACKING
A. Background on MIT Reality Data
The cellspan table of the MIT Reality data tracks move-

ments of each person through the cellular network [2]. Every
time a new cell is entered, its ID is recorded, along with
the time stamp of the transition. it is implicitly assumed in
the study that individual cell phones were used solely by one
individual throughout the study, so that cell phones and people
are associated uniquely.
We have a total of 2.5 million transition for all 89 subjects

who have data; the shortest person-corpus consists of only 846
observations, while the longest has 79,221. The histogram of
corpora sizes is shown in Figure 1.

0 20000 60000

0
2

4
6

8
12

Person−Corpus Sizes

corpus size

nu
m

be
r o

f p
eo

pl
e

Fig. 1. Person-corpus sizes distribution for MIT Reality data. 89 subjects
have 2.5 million cell transitions total, with corpus sizes ranging from 846 to
79,221. Most people generate large tracks of their movements.

The average step – time between the current and the next
cell ID reading is recorded – is about 4 minutes. We randomly
pick contiguous “future” samples of fixed length to identify
the people who produced them. The average time span for the
fixed sample lengths we use are shown in Table I.

B. Calling Time Averages
A standard way to model irregular time series data is to

reduce it to standard period metrics which can then be classi-

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

SVM on Call Timings

person ID

fra
ct

io
n 

co
rre

ct
Fig. 2. Identifying people with multi-class SVM on their weekly averages
of call timing data. We don’t get most of the people above 50%, and such
identification doesn’t work far into the future.

fied. For call data, we considered various time characteristics
first – the duration of a call, the time of day the call is made,
the interval between calls, etc., and computed weekly averages
of those features for each person. We then fed those people-
weeks of timing feature vectors into a support vector machine
(SVM) classifier, identifying the class – a single person ID –
of a de-labelled weekly vector. The call timing features used
are shown in Table II. The results are shown in Figure 2. There
are about 10 people whom we can identify better than 50% of
the time, a middle group which can be identified with some
accuracy, and the remaining half, not shown in the graph, who
cannot be identified at all using this method. Obviously, time
patterns are not enough – we need to consider sequence data,
and find a better identification method.

V. MODELLING SENSOR DATA AS A LANGUAGE
The cell ID sensor data can be reduced to a sequence

of integers (with optional timestamps). In the MIT Reality
dataset, the integers are the IDs of the cell towers tracking
a phone – and a person’s – movements. We propose treating
each person’s sensor data stream as a separate language, and
model it with n-gram Markov chains. Below we review n-
gram language modelling, and then compare sensor corpora
to each other and real natural language corpora of English
and Russian, in terms of the fertility concept.
Now we have, for NP people, NP corpora, each repre-

senting its own language. The words in these languages are
sensor readings, in our case cell tower IDs. The utterances are
movements, leaving a trace of the IDs behind. Currently we



TABLE II
CALL TIMING FEATURES

feature name description
n total number of calls
nz number of non-zero length calls
tcl total calling time

(nz.)duration.mean average duration of a call
(nz.)duration.sd standard deviation of call duration
start.mean average call start day time in seconds from

midnight
start.sd standard deviation of call start time from

midnight
interstart.mean average time between call starts
interstart.sd standard deviation of inter-start times

Aggregated weekly per person, used for SVM-based identification. For
mean and sd features we also compared median and mad robust estimators.
The nz versions take into account only non-zero length calls, which also
excludes SMS messages. We also separated business days from weekends,

without much difference in prediction quality.

treat the whole history as a single sentence. Later variations
may treat sensor IDs as letters, and try to build words on top
of them, and then group those words into sentences.
The original n-gram model, a Markov chain, was developed

by Andrei Markov for an analysis of the text of Pushkin’s
“Eugene Onegin” [15]. It naturally applies to sensor data when
it is treated as a language. A bigram corresponds to a transition
from one cell to another, and an n-gram in general is then
a segment of a user’s trajectory. The question is to estimate
the probability of a sentence, a sequence of words, from a
corpus. The general way to do it is by developing a language
model Φ, a “grammar” generating possible sentences, and use
Equation 1 to compute the probability.

P (W) =
n∏

i=1

P (wi|Φ(w1, . . . , wi−1)) (1)

Φi = S(wi−n+1, . . . , wi) (2)

The most common way of building Φ is to count the
occurrences of n consecutive words, the n-grams, up to
some order N , and use such counts in a maximum-likelihood
estimate, with various kinds of smoothing S to redistribute
some probability mass from observed n-grams to those unseen
(so the product never zeroes out). While the state of the art
smoothing for natural languages is Kneser-Ney smoothing [1],
[6], it turns out the counts-of-counts used by Kneser-Ney
are too sparse for our sensor data, and we use Witten-Bell
smoothing instead [20].
In speech and text processing, corpora atoms are either

phonemes or words, with n-grams then corresponding to
words or phrases (collocations), respectively [9], [14]. We
use the word/phrase terminology in our analogies with natural
language processing. An n-gram language model represents a
corpus as a Markov chain of order n − 1.

A. Cell ID Fertility
Corpus fertility is a metric intoduced in [13] to quantify how

much of the corpus is “enough” for modelling phenomena of
interest. The idea is, we can stop collecting corpora when

0 20000 60000

0
50

0
15

00

Fertility of MIT Reality

total words

to
ta

l n
ew

 w
or

ds
 s

o 
fa

r
Fig. 3. Fertility of 89 people-corpora of sensor data. The curves are not
showing saturation seen in the natural languages corpora, and sharp increases
mean a new area is covered.

the number of new words (unigrams) or generally n-grams
encountered per unit of new raw text becomes low. The
original methodology was applied to Russian and English
corpora of classic texts and press articles. The corpus is split
into chunks of equal size, for example 1,000 words, and these
chunks are “walked” in sequence, either original or permuted.
While walking, we count, for each new chunk, how many new
words are encountered. The resulting curve shows the fertility
of the corpus, typically rapidly growing in the beginning and
asymptotically power-law in the end.
It is interesting to compare our sensor data corpus with a

natural language such as English or Russian. For an idea, we
show some fertility graphs below. On Figure 3, all 89 people’s
fertility is shown; Figure 4 shows the fertility of a 2.4 billion
word English press corpus, and Figure 5 shows the fertility
of a 1 billion word Russian press corpus, both collected in
2007 from the contemporary major periodicals such as the
New York Times and the Kommersant.
Natural languages show the same power law slow growth.

On the other hand, the cell ID sensor data corpora, while
generally adhering to it, show higher variability. There seems
to be enough novel travel to inject new sets of IDs into
most people’s streams. Such jumps in fertility may be good
separators of the segments to model individually.

VI. N-GRAM RANKING FOR SENSOR DATA STREAMS
We use SRILM [18], the industry standard toolkit for

language modelling by Andreas Stolcke. SRILM implements
various smoothing methods needed to redistribute some prob-



0.0e+00 1.5e+09

0e
+0

0
2e

+0
6

4e
+0

6
English Fertility Analysis

total words

to
ta

l n
ew

 w
or

ds
 s

ee
n 

so
 fa

r

words:
2,445,986,505 total
3,872,068 unique 
 tg.alpha 0.00044

Fig. 4. English press corpus fertility. Out of 2.4 billion words, about 3.9
million are unique; we walk the corpus in 1K word increments, counting the
uniques per chunk, accumulating total uniques count on the Y axis. Shown
at 0.5 billion ticks on X. The tg.alpha shows the angle of the regression line
fitted to the log-log plot of the data – basically, we’re getting 0.4 new words
per each 1,000 words of corpus in the end, usually due to OCR errors, but
sometimes neologisms.

0e+00 4e+08 8e+08

0
15

00
00

0
35

00
00

0

Russian Fertility Analysis

total words

to
ta

l n
ew

 w
or

ds
 s

ee
n 

so
 fa

r

words:
953,668,008 total
3,607,170 unique 
 tg.alpha 0.00048

Fig. 5. Russian press corpus fertility. 1 billion word corpus produces about
3.6 million unique words; see English fertility caption above for the fertility
walk methodology. Shown at 0.2 billion ticks on X.

TABLE III
5-GRAM IDENTIFICATION OF MIT REALITY DATA

!
!

!
!

!
!

!

batch
size

sample
length 10 20 50 100

1 35 46 52 53
2 25 41 49 53
3 44 50 53 54
5 44 52 54 54
10 41 54 54 54
20 49 54 54 54
50 47 54 54 54
100 47 54 54 54
1000 51 54 54 54

Training on 63 subjects up to 2004-10-01, identification on X samples after
that (rows), for sample lengths of Y (columns). Identification with 5-gram
models. Each cell shows how many people out of 63 we identified right,
given X samples of length Y each past the training date. We can identify
majority of the people reliably, and identification quality stays robust far

into the future.

ability mass to missing n-grams. Since there are not enough
contexts for Kneser-Ney smoothing, which is best for English,
we use Witten-Bell smoothing instead. The original MIT
Reality data is provided as a MySQL dump. We extract cell
tower IDs from the cellspan table and create a separate text
file for each person, containing only the IDs in the sequence
observed for that person. That file is fed to SRILM and an n-
gram model is created for each person, out of NP= 89 people
in total. Then we start NP TCP person-servers, one for each
person-model, to answer queries on perplexity of the incoming
phrases in this person’s model. We interface SRILM’s C++
code to our OCaml-based system, which allows for high-level
modelling at high speed, in parallel (at process level). The code
is available at [11]. We chose 5-gram order for our models,
following the well-established result from natural language
processing. OCaml [12] is a high-level functional language
which is used for many natural language applications such as
creating a Sanskrit dictionary and text segmentation system
[7]. It allows for an extensible and compact representation of
our methods at native C++ speed.

A. Ranking

We split the data into training and test sets as past and
future by a cutoff date, and take samples for identification from
the future, keeping the originating person ID for evaluating
identification precision, but unknown during identification pro-
cess itself. When a sample comes, we feed it to each person-
server and get back the perplexity, recording the resulting tuple
as (person, perplexity). Once all tuples are returned by the
servers, we sort them in the order of ascending perplexity, and
establish the position of the original person. We call this the
self-rank, or just rank. If identification is correct, the original
person will come on top with lowest perplexity, having the
rank 0. If the rank is more than 0, it means that for the given
sample, there are one or more people who are “more like you
than yourself,” which can be used for clustering.



B. N-gram Identification Results
We pick a date as a cutoff, in our case 2004-10-01, allowing

between one and two months of data before that and between
five and six months after, and the train our language models on
the “past.” For each person, we pick 1,000 samples of a fixed
length from the “future,” for a set of lengths, and run the n-
gram identification algorithm. The results of the identification
are shown in Table III.
We very quickly reach the top precision achievable with

n-gram models, 54/63. A few runs are usually needed to
increase the precision to its asymptotic ceiling for a given
sample length, but for the longer sample lengths, 50 or 100,
one or two samples may be enough. Interestingly, there are
always some folks who are hard to identify, at any number of
samples or sample sizes. It would be interesting to know why
they are hard to model, and if other methods could identify
them better.

C. Prediction with N-gram Models
N -gram models can be used for text generation. When

generating the next word, the vocabulary is sampled so that
it corresponds to the expected n-gram probabilities given
the previously observed context. We have contributed to the
SRILM generation routine so that it can take an existing
context and generate a given-length sentence. Then we con-
ducted an experiment, predicting a person’s possible futures
and comparing them with what actually transpired. We took
person number 38 and considered samples of length 10, and
took the first half to predict the second half and compare. We
generate a 1,000 possible futures for each prefix, and compare
each state (position) of a predicted suffix to the actual one,
according to the following metrics.

• pos.choices – positional choices: How many options do
we have at each step? Count the number of different states
predicted at each position across all the simulated suffixes

• pos.hits – positional hits: How many times do we get
a position right? Count how many simulated suffixes
coincide with the actual one at each position

• sum.hits – sum of hits: How many total hits do we have
per each predicted suffix? This can range from 0 to the
length of the suffix, 5 in our case

An example of this process: given the sample 35 1 35 38
3 — 35 3 35 1 35, with the separator dividing the prefix and
the (actual) suffix, we might generate a predicted suffix 35 3
63 38 35, with sum.hits = 3 here. The statistics above are
summary for all 1,000 generated suffixes, and are shown in
Table IV.
These results can be evaluated in comparison to the fertility

of different order n-grams for the person at hand. Fertility
of n-grams of orders 1 to 5 are shown in Table V. We see
that pos.choices is much less, at each position, than unigram
fertility. The first “next” position is predicted correctly 64%
of the time. Although 19% of all predicted suffixes have no
pos.hits at all, the other 81% have some – with more than 53%
having 1 or 2, 18% getting 3 out of 5 positions correctly, and
9% getting 4 out of 5.

TABLE IV
PREDICTION OVER 1,000 SIMULATED SUFFIXES

0 1 2 3 4 5
pos.choices 27 50 72 78 83
pos.hits 644 373 326 96 284
sum.hits 190 279 252 181 93 5

Predicting the sample 35 1 35 38 3 — 35 3 35 1 35, subject 38. We hit the
first position with about 0.64 accuracy, and get 2 out of 5 hits per suffix

quarter of the time.

TABLE V
PERSON CORPUS FERTILITY FOR n-GRAMS OF ORDER 1 TO 5 (SUBJECT

38)

n-gram order # n-grams of that order
1 854/32630
2 2381
3 1716
4 2322
5 2530

The unigram fertility shows actual at 854, and adjusted at 32630 – the latter
is the unigram fertility of all people-corpora combined, as required for
perplexities to be comparable. People are highly constrained, and lack of

n-gram growth shows structure in their movement analogous to that of the
natural languages, even in the absence of the “sentence breaks.”

VII. IDENTIFICATION WITH SUFFIX TREES
A suffix tree is a compressed trie of all suffixes of a given

string [19]. A generalized suffix tree (GST) is a suffix tree
of a set of N strings, concatenated together with unique
and distinct separators in between. It provides a compact
representation of a text corpus, storing N strings together with
common prefixes shared, and unique suffixes identifying the
original strings containing them. We use an implementation
of the GST which stores the set of the IDs of the strings
“passing” through a node, and the ID of the string ending in a
leaf. Using it, we developed a method of author identification
by noticing and counting person-unique subsequences in the
sample.

A. Suffix Identification Algorithm
For each subsequence in the sample, we track it to either

a leaf or a node of the GST. The node contains IDs of the
original strings (people-corpora) which went through it, and
we add those to Node counts in favor of those people possibly
generating the sample. Each leaf contains an ID of a single
potential author, whose Leaf count is then increased. When
we’re done, we have Leaf and Node counts for each potential
author, and take the top Leaf one with a top Node breaking
the tie, if available. We get several samples from each person
for evaluation and pick the author by a majority vote on all
samples by the above procedure.

B. Suffix System Setup
We use a very fast OCaml suffix tree implementation by

Sébastien Ferré [3], generalized by us to random alphabets
and available as free software [4]. It uses an integer set storing
ranges compactly, and the whole of MIT Reality training data
(up to the cutoff) fit into about 350 MB of RAM. The natively



TABLE VI
SUFFIX TREE-BASED IDENTIFICATION OF MIT REALITY DATA

!
!

!
!

!
!

!

batch
size

sample
length 10 20 50 100

1 7 20 19 26
2 12 21 22 25
3 15 25 23 27
5 19 30 31 37
10 23 33 39 42
20 33 35 45 51
50 39 43 50 53
100 45 47 54 53
1000 48 48 52 52

Training on 63 subjects up to 2004-10-01, identification on X samples after
that (rows), for sample lengths of Y (columns). Each cell shows how many
people out of 63 we identified right, given X samples of length Y each past
the training date. While lagging behind n-gram identification a bit, suffix
tree quickly catches up with either the sequence length growth or the batch
size, and tops off at the precision similar to n-grams. It indicates a ceiling

specific to the data itself.

ocamlopt-compiled executable builds the tree in less than a
minute, with the longest runs on the full 1,000-sample batches
taking less than 4 minutes on a MacBook Pro with the Intel
Core 2 Duo 2.4 GHz processor and 4 GB RAM, running
sequentially on a single core. In comparison, the full run of
the n-gram system on all 63 batches of 1,000 samples each,
for the samples of length 100, takes about 6 hours on the
same machine, using both cores – but it also selects all of the
samples to be used by the subsequent suffix tree identification.

C. Suffix Identification Results
The results are shown in Table VI. The suffix tree is

very fast to build and identifies a sample directly, instead of
perplexity comparison with all other candidates as in the n-
gram model. However, since it counts unique subsequences,
it may underperform for those people who share lots of
subsequences, especially at shorter sample sizes. When we
increase either the sample size or the batch size, we quickly
reach the performance of the n-gram model. Suffix trees also
represent a whole compressed set of corpora at once, thus
allowing for comparisons of the corpora at different points in
time, e.g. with the metrics from [16].

VIII. CONCLUSIONS
We presented a life language framework for human behavior

modelling, and two algorithms for identification with it. Both
language model and suffix tree-based identification show high
precision with enough samples, implying that the underlying
patterns are separable and sufficiently unique to individuals.

N -gram models achieve high precision very quickly, at 1-
2 samples, while suffix trees need more than 10 samples to
get to the high precision, but work faster and also identify
author-unique subsequences. Prediction with n-grams shows
reasonable areas for the future locations, and generally pro-
vides much narrower corridors for possible trajectories than
generally available, hinting there’s a lot of predictability out
there waiting to be mined.

We also found that a natively compiled OCaml identification
system is comparable to C++ in speed and efficiency, and
interoperates well with SRILM – an established C++ library
for n-gram modelling, while allowing for easier adaptation to
different classes of data. We provide our functional framework
for sensor data identification as free software at [4], [11] and
hope it can be useful in author-sequence identification in other
domains.

IX. FUTURE WORK

We plan to extend the language of life analogy further, to
leverage more of the NLP methods. We can treat IDs as letters,
not words, and identify words as frequent item sets. Further,
we can try shallow parsing, to determine the relationships
between segments. Fertility analysis can help gauge when we
have enough sensor data to have a representative corpus, and
also distinguish jumps – injection of new IDs – as natural
segment separators. Suffix trees can be treated probabilis-
tically, allowing for their own prediction techniques. We’ll
further flesh out the HUMBLE framework, identifying change
in behavior analogously to Kullback-Leibler distance between
the language models built over windows in time, sliding over
corpora. The ultimate goal, of course, is understanding the
language of life in the same way as computational linguistics
approaches natural language.

X. ACKNOWLEDGMENTS
This work results from a research program in the Institute

for Security, Technology, and Society at Dartmouth College,
supported by the U.S. Department of Homeland Security un-
der Grant Award Number 2006-CS-001-000001, Metro-Sense;
Scalable Secure Sensor Systems. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as necessarily representing the official
policies, either expressed or implied, of the U.S. Department
of Homeland Security.
We’d like to thank Dmitri Levonian, the founder of Corpus

Technologies, for starting the fertility studies as a means
to measure when collecting “enough” of a corpus is really
– or already – enough. Andreas Stolcke, the author and a
decade-long maintainer of SRILM, helped with the APIs and
integrated our improvements. We thank Vince Berk and the
HUMBLE group at Thayer for casting and developing these
ideas in the (fun) context of quantitative human behavior
modeling.

REFERENCES
[1] S. Chen and J. Goodman. An empirical study of smoothing techniques

for language modeling. Technical Report TR-10-98, Harvard University,
August 1998.

[2] N. Eagle and A. Pentland. MIT Reality data. http://reality.media.mit.
edu/, 2005.

[3] S. Ferré. An efficient generalized suffix tree implemenattion in OCaml.
http://www.irisa.fr/LIS/ferre/software.en.html.

[4] S. Ferré and A. Khrabrov. Generalized suffix tree in OCaml over generic
alphabets, Free Software. http://github.com/alexy/suffix/tree/master/.

[5] M. C. González, C. A. Hidalgo, and A.-L. Barabási. Understanding
individual human mobility patterns. Nature, 453(7196):779–782, Jun
2008.



[6] J. Goodman. A bit of progress in language modeling, extended version.
Technical Report MSR-TR-2001-72, Microsoft Research, 2001.

[7] G. Huét. INRIA Sanskrit portal. http://sanskrit.inria.fr/.
[8] H. Huo and V. Stojkovic. A partition-based suffix tree construction and

its applications. In W. Bednorz, editor, Advances in Greedy Algorithms,
page 586. November 2008.

[9] F. Jelinek. Statistical Methods for Speech Recognition. MIT Press, 1997.
[10] D. Khmelev. Text authorship recognition using Markov chains. Vestnik of

the Moscow State University, 9(2):115–126, 2000. Also available as http:
//www.philol.msu.ru/∼lex/khmelev/published/vestnik/vestnik2000.pdf.

[11] A. Khrabrov. Life language identification code, Free Software. http:
//github.com/alexy/life-language/tree/master/.

[12] X. Leroy. The OCaml programming language. http://caml.inria.fr/.
[13] D. Levonian, A. Khrabrov, and S. Rubakov. N-gram fertility of a

natural language corpus. Technical report, Corpus Technologies, 2008.
Published as http://suffix.com/tech-reports/fertility/.

[14] C. D. Manning and H. Shütze. Foundations of Statistical Natural
Language Processing. MIT Press, 1999.

[15] A. Markov. An example of a statistical study on the text of “Eugene
Onegin”, illustrating connecting observations into a chain. Annals of the
Russian Imperial Academy of Science, X(3), 1913.

[16] K. Rieck, P. Laskov, and S. Sonnenburg. Computation of similarity mea-
sures for sequential data using generalized suffix trees. In B. Schölkopf,
J. Platt, and T. Hoffman, editors, Advances in Neural Information
Processing Systems 19, pages 1177–1184. MIT Press, Cambridge, MA,
2007.

[17] N. F. Sandell, R. Savell, D. Twardowski, and G. Cybenko. HBML: A
language for quantitative behavioral modeling in the human terrain. In
2nd International Workshop on Social Computing, Behavioral Modeling,
and Prediction in Phoenix, AZ. 2009.

[18] A. Stolcke. SRILM – an extensible language modeling toolkit. In Proc.
Intl. Conf. Spoken Language Processing, Denver, Colorado. September
2002. Code is available at http://www.speech.sri.com/projects/srilm/.

[19] P. Weiner. Linear pattern matching algorithm. In 14th Annual IEEE
Symposium on Switching and Automata Theory, pages 1–11. 1973.

[20] I. Witten and T.C.Bell. The zero-frequency problem: Estimating proba-
bility of novel events in adaptive text compression. IEEE Transactions
on Information Theory, 37(4):1085–1094, 1991.


