A Proof of the Church-Rosser Theorem
for the Lambda Calculus
in Higher Order Logic

Peter V. Homeier

U. S. Department of Defense, homeier@saul.cis.upenn.edu
http://www.cis.upenn.edu/ homeier

Abstract. For many years the Church-Rosser theorem has been a mile-
stone in the treatment of the lambda calculus. It describes the confluence
property, that if an expression may be evaluated in two different ways,
both will lead to the same result. This paper describes a formulation of
the proof within the Higher Order Logic (HOL) theorem prover. This fol-
lows the proof by Tait/Martin-Lof, preserving the elegance of the classic
presentation by Barendregt. In particular, we justify (in part) the con-
troversial Barendregt Variable Convention, which to some seemed to be
incomplete given the possibility of capture. This work exemplifies a sound
prototypical foundation for analyzing general programming languages.

1 Introduction

Subtle issues arise in the lambda calculus despite its simplicity, yet the simplicity
reveals them with great clarity. Thus this calculus provides an experimental
laboratory where ideas can be tested for programming languages in general.
The confluence property states that if an expression may be evaluated in two
different ways, both will lead to the same result. This is known as the Church-
Rosser theorem, after the two scientists who first attempted to prove it in 1936.
However, that first attempt was “fairly long and very complicated.” Schroer’s
proof in 1965 was 627 typed pages. A genuine simplification of the proof was
found by Martin-Lof in 1972, following ideas put forward by Tait. This proof
structure has become the standard; for more details on the history, see [2,7].
As a challenging problem, this has interested researchers in mechanically
checked proofs as well. In 1988 Shankar published a proof of the Church-Rosser
theorem using the Boyer-Moore theorem prover [6, 7]. Recently, Vestergaard and
Brotherston proved the Church-Rosser theorem using HOL/Isabelle [9]. Both
of these proofs described calculations in the lambda calculus using both a-
reductions and (-reductions, and proved confluence for arbitrary intermixtures
of these. This intermixture bred complexity.
We have taken the elegant development by Barendregt [2] as our model,
and have attempted to recreate it as faithfully as possible within the absolute
demands of mechanical proof checking. This has resulted in a proof which has



been verified within the Higher Order Logic theorem prover, and which we believe
shows a cleaner and simpler expression of the inductive arguments involved.

This is in part because we attempt to mechanize the “Barendregt Variable
Convention” (BVC). This convention eliminates the problem of the capture of
free variables during substitution by fiat. This allowed Baredregt to present his
proofs with remarkable clarity, avoiding precisely the source of much of the tech-
nical difficulty, alpha-equivalence. This convention has been highly controversial,
with some claiming that his proofs are incomplete at best.

We consider Barendregt’s Variable Convention to be a valuable simplifica-
tion. We have found a way to duplicate the essential structure of Barendregt’s
reasoning, within the purity of a highly secure conservative extension of a fully-
expansive theorem prover, HOL. First a “raw” version of the lambda calculus
is defined, and then refined to a second layer called the “real” lambda calcu-
lus, formed as the quotient of the raw lambda calculus by the alpha-equivalence
relation. Alpha-equivalence is difficult at the raw level. At the real level, the
Barendregt Variable Convention offers a simple way to conduct proofs that oth-
erwise would have been mired in unnecessary detail. The Tait/Martin-L6f proof
improves on its predecessors, yet is still intricate, and welcomes any clarification.

The author wishes to thank Randolph Johnson, Bill Legato, Brad Martin,
Sylvan Pinsky, and Frank Taylor for many helpful comments and improvements.

2 The Raw Lambda Calculus

We define the raw lambda calculus (A, ), beginning with the type of terms, term1.
The type of variables is var. We also use A; to abbreviate term1.

Definition 1. A; = var | A1 A; | Avar. A,

This defines terms in the lambda calculus inductively as either being vari-
ables, applications of a term representing a function to another term representing
an argument, or abstractions of terms by a variable, which represent functions
of one argument. These terms may be compared for syntactic equality (=).

We will use t, u, e, M, and N as typical variables of type A;, w, z, y, and 2
as typical variables of type var, r for sets of variables, and s for substitutions.

This definition is created in the HOL logic by the code

val _ = Hol_datatype
¢ terml = Varl of var
| Appl of terml => terml
| Laml of var => terml ‘¢ ;

This creates terml as a new concrete recursive type within the HOL logic, and
Vary, Appi, and Lam; as constructor functions. When no confusion may result,
we will use z for Vary z, t u for Appy t u, and Az. t for Lam; z t. When termi is
created, Hol_datatype automatically proves several theorems that characterize
the behavior of values of this new type regarding structural induction, function
existence, cases, and constructor distinctiveness and one-to-one properties.



We use the function existance theorem to define the following functions by
primitive recursion, by induction on the structure of terms. We here use max
as an infix operator that yields the maximum of its arguments.

Definition 2 (Definition of the height of a term).

HEIGHT.(z) %0

HEIGHT (tuw) % (HEIGHT; t max HEIGHT; u) + 1

HEIGHT;(Az. u) “ HEIGHT u + 1

Definition 3 (Definition of the free variables of a term).

FVi@) = {o)
FVitu) “€FVit U FVy
FVi(\z. u) € FV; u — {2}

We express proper substitution on a term according to Stoughton [8], using
explicit simultaneous substitutions, as a separate data structure. These combine
a finite number of individual substitutions of expressions for variables into one
substitution, where all are applied simultaneously. The actual application of a
substitution to an expression is done by versions of the infix binary operator <.

We model a simultaneous substitution as type (var # terml)list, a list of
pairs (z,e) of a variable z and an expression e to be substituted for x.

Yy o= 1] (var:=4y) = Xy

Notation: We will use := to create a single substitution pair, e.g., (z := €),
and :: for infix Cons and [ ] for Nil to create lists of pairs, e.g., (z :=€) : [],
which is the same as [z := e]. Longer lists are expressed with commas as [z; :=
e1, T2 := eq, T3 := e3], or, equivalently, as [z1, Z2, T3 := €1, €9, e3]. Finally, for a
substitution of a list of variables ys for another list zs, we will use [xs := ys].

Definition 4 (Substitution applied to a variable).

x:=e)s) = if y==x then eelse y <y s
def
= Vary y

y <7 (
y <y [

Definition 5 (Free variables of a substitution on a set of variables).

( def
]

FVsubst; s r 4 U(image (FV;y 0 SUB; s) r)

where we define SUB; s y = y <} s, as a curried prefix version of <. For every
variable in the set r, its image under substitution by s is computed and the free
variables of the image are found. All of these free variable sets are unioned for
the result. Note if z is not mentioned in s, then z <} s = 2.

Simultaneous substitutions allow us to define substitution on terms using
primitive recursion. For substitutions on abstractions, we carefully calculate a
change of bound variable and combine this with the existing substitution before
it is applied to the body of the abstraction.



Definition 6 (Substitution on terms).

def
<8 = zd7s

(tu) <y s def (t <1 8) (u<ys)
(A\z. u) < s Lf Jet 2/ = variant = (FVsubst; s (FVy u — {z})) in
Az (u <y ((z:=12') 2 5))

Some other proposals [7,9] (but not [4]!) define substitution on cases where
capture may occur either incorrectly or not at all. The further development must
then ensure that substitution is only applied safely.

By contrast, this definition of substitution is complete, correctly avoiding the
possibility of capture of bound variables. It chooses a new bound variable using
the variant function. We here define variant = r to be z if « ¢ r, otherwise to
choose some variable not in the set r. Thus in any case, variant z r ¢ r. Similarly,
if the substitution s does not invite a capture, so that the bound variable z need
not change, definition 6 above ensures that in fact 2’ = z.

Note that if a variable z # z is free in the abstraction body u but is not
explicitly mentioned by the substitution s, then FVsubst; delivers z in its result.

At this point we have built the foundational theory of raw lambda-calculus
terms. However, it has one crucial flaw. The one-to-one property of the construc-
tors states that Azi. t; = Azs. to if and only if 1 = x5 and #; = t5. But in fact
we want to consider, for example, Az;. r; and Axy. o to mean the same term.
Intuitively, it should not matter what name one uses for a bound variable, as
long as one is consistent in how it is used. In fact, the Church-Rosser property
is not true for the raw lambda calculus as presented. To prove this property, we
must derive a variant where distinctions such as above are blurred. The exact
blurring we wish to achieve is called alpha-equivalence.

3 Alpha-Equivalence

In the past, alpha-equivalence has been defined as a relation between terms
where some bound variables are replaced in a consistent fashion. In Church and
others since, the renaming of bound variables was built into the semantic rules,
as a reduction relation. The above theory was extended by the axiom scheme

Az. t = Ay. (t <y [z:=y]) (1)

where y is not free in Az. ¢ [3].

However, several authors have taken a different route, including Barendregt
[2] and Abadi and Cardelli [1], who prefer to identify alpha-equivalent terms
at the syntactic level. Thus Az.x = Ay.y, etc. This is commonly assumed to
be done by forming equivalence classes of the existing terms, according to the
alpha-equivalence relation, and letting these classes be the new terms. In order
to form these classes, the relation itself is often defined similarly to (1).

This definition is not unsound. However, we question it on aesthetic grounds.
If we use alpha-equivalence to simplify substitution, as in the BVC, should we



use substitution in defining alpha-equivalence? This motivated us to search for a
definition of alpha-equivalence independent of substitution. We found this using
an auxiliary notion of contextual alpha-equivalence, which relate two terms in
the context of a list of lambda-bindings for each term. Shankar [7] is similar.

Definition 7 (Contextual alpha-equivalence of variables). Let xs and ys
be two lists of variables, and denote the length of xs as ||zs||- The contextual
alpha-equivalence of two variables w and z in the respective contexts xs and ys
(w 22.=Y% 2) is defined recursively on the list structure of xs and ys as

.. .. def
TTS—Y::1yYs <
W var =a z =

=z A z=y A fles] = sl v
(w#z AN z#£y AN wiE=Y2)

[] _{] . déf ( var—

W var=ao w = Z)

This definition searches down the two context lists simultaneously to seek a
pair of variables which match w and z respectively. w and z are equivalent if the
two lists have the same length and if w and z both appear in the contexts at the
corresponding location, or if they do not appear at all but are equal.

Lemma 8. (z {3=0"y) < (l|os]| = |lys[| A
(x <y [zs :=ys] = Vari y) A
(y <Y [ys := xs] = Var; z))
Proof: by list induction on s and ys, and then considering cases for z and y.

Definition 9 (Contextual alpha-equivalence of terms). Let xs and ys be
two lists of variables. The contextual alpha-equivalence of two terms t and u
in the respective contexrts xs and ys (t “*=Y° u) is defined inductively on the
structure of the terms t and u by the rules

zs —ys rs—ys rS—ys xS —yiys

L var:gz t :g ty , uy :Z U2 t1 :g YS to
TS—ys TS5 —ys TS—uys

x =Ry t up TP=Y0 1o us Azt TT=Y Ayt

This maps the test of equivalence down through the structure of the terms,
adding context whenever a lambda abstraction is penetrated, resolving eventu-
ally to comparisons of the variables in each term.

We have implemented this definition in HOL using Myra VanInwegen’s rule
induction package. This package automatically proves theorems for the new rela-
tion’s rules, the inversion of the rules, and weak and strong induction principles.
Notably, this package supports defining mutually recursive relations. [5]

Definition 10 (Alpha-equivalence of terms). The alpha-equivalence of two
terms t and u (t =qu) is defined as

t =qu def t[]E[a] u

Thus we have defined alpha-equivalence between terms without appeal to
substitution. Despite the brevity of the substitution-based definition (1), we
believe that this is actually simpler, without hidden subtleties.

It is not hard to prove in HOL that this relation is reflexive, symmetric, and
transitive (theorems ALPHA REFL, ALPHA_SYM, ALPHA_TRANS). Given this alpha-
equivalence relation, we can now form the real lambda calculus as a quotient.



4 The Real Lambda Calculus

We define the new type of terms of the real lambda calculus as a quotient of the
raw term type by the alpha-equivalence relation.

Definition 11. A4 & A [=a
This is accomplished in HOL by a new package to define quotient types [5].

val term_ABS_REP =
save_thm("term_ABS_REP",
define_quotient_type "term" "term_ABS" "term_REP"
ALPHA_REFL ALPHA_SYM ALPHA_TRANS);

The function define_quotient_type defines the new type term based on the
reflexive, symmetric, and transitive properties of the equivalence relation. It also
defines two new functions, an abstraction function term_ABS to map from terml
to term, with notation |¢], and a representation function term REP to map from
a term to a (fixed) representative terml, with notation [¢]. This call returns a
theorem term_ABS_REP that completely characterizes these functions:

Theorem 12 (Abstraction/representation mappings for terms).
(Va. [[a]l] =a) A (Vrr'.r=.7" & (Ir] =)

The package also provides functions to prove various other results directly
from this theorem, for example,

Fvr. [lr]] =ar FVa; as. (a1 = az) & (Ja1] =q [az2])

In addition to creating the new type term (which we abbreviate A), we need
to recreate the logical environment, with all defined constants and theorems that
existed for Ay, except for alpha-equivalence which is represented in A by equality.

First, using these abstraction and representation functions and the original
constructor functions, we define the corresponding real constructor functions.

Definition 13 (Term constructors).

Varz & |Var; x|

App tu = |Appy [t] [u]]
Lam z t & |[Lam; z [t]]

Now we recreate in A functions corresponding to those in A;. However, a
technical problem arises; not every function definable in A; can be realized in
A. In particular, the function must respect alpha-equivalence in the following
sense: if the function is called twice with arguments which are alpha-equivalent,
then the results should be alpha-equivalent. Of course, if the result type is not
Aq, the results should be equal. We call such a function respectful.



Recreating a function definition in A takes three steps; first, prove that the
function respects alpha-equivalence, then define the new function using the ab-
straction and representation functions, and finally prove as a theorem in A the
same form of the definition in A;. This pattern is repeated for every function we
wish to recreate in A. Proving respectfulness may be arbitrarily difficult.

Lemma 14. ¢, *°=Y ¢, A 2 €FVity = y.yeFVits A 2 5=y
Proof: by strong rule induction on ¢; **=Y° t5, and definitions 3 and 7.
Definition 15 (Free variables of a term).

Respectfulness:  t; =4 ta = (FV1 t1 = FVy t9)
def

Definition: FV ¢ = FVy [t]
Recreated FV(z) = {z}
definition: FV(tu) = FVtUFVu

FV(Az.u) = FV u— {z}

The respectfulness theorem is proven using definition 10, the symmetry of
*8=Y% lemma 14, and the definition of FV;. The recreated definition is proven
using respectfulness, the definition, and the original definition in A;.

The HEIGHT function is recreated in an exactly analogous way. where re-
spectfulness is proven by an easy rule induction on t; **=Y° t,.

With substitution things become more complex. The first task is to model
the type of substitutions in A. Without going into the details, we extend the
alpha-equivalence relation in the obvious way first to pairs of a variable and a
term (=R¥T), and then to lists of such pairs (=3'P$*). The quotient package [5]
provides tools to create the appropriate mapping functions between the A; and
A substitution types. We will use the same |s| and [s] notation for the mappings
between the substitution types. These tools maintain the pair and list structure,
so substitutions may be considered defined by list recursion, with constructors.

Definition 16 (Substitution constructors in A).

(zi=e)us & |(z:=e]) = [5]]
] =)

From this we can derive the standard characterization as in theorem 12.

Definition 17 (Substitution on a variable).

Respectfulness: — s; =30t 55 = y ¥ s; =, y <V 59

Definition: y<'s def ly <y [s]]

Recreated y<'((z:=e)s) = if y=x theneelse y<’s
definition:  y <[] = Vary

Respectfulness is proven by list induction on the substitutions, the reflexivity of
=,, the definition of =5"P%'  and definition 4. The recreated definition is proven
from the definition above and definitions 4 and 16. Analogous to SUB;, we define
SUB sy = y <Y s as a curried prefix version of <.



Lemma 18. (FV o SUB s) = (FV; o SUB4[s])

Proof: By the definitions of SUB and SUB;, we need to prove FV(z <V s) =
FV1i(z<?[s]). By definitions 15 and 17, this is FV1([|z<?[s]]]) = FVi(z<¥ [s]).
By the respectfulness of FVy, this follows from [|z <V [s]|] =4 x <1? [s]. This
is true by theorem 12.

Definition 19 (Free variables of a substitution on a set of variables).

Respectfulness: s1 Eiy“b“ sy = FVsubst; s; » = FVsubst; sy r
Definition: FVsubst s 7 %' FVsubst; [s] T

Recreated definition: FVsubst s r = |J(image (FV o SUB s) r)

Respectfulness is proven by definition 5 the respectfulness of <1 and FVi, and
from definitions 15 and 17. The recreated definition is proven by the definition
above, definition 5, and lemma 18.

Before we can define substitution on terms in A, we must first prove that
substitution in A; respects alpha-equivalence. This has an interesting proof.

Theorem 20. (([[zs|| = llysll) < (lzs'll = llys'l)) A
(Ve.z € FV1 t1 = o<V [zs:=ys] =x <} [zs' :=ys']) A
Vy.y € FV1 &2 = y < [ys = zs] =y < [ys’ := zs'])
= ((tl zszgs t2) =4 (t1 s Egs tg))

Proof: by structural induction on ¢;. We have three cases:

Case 1. t; = x. We will prove (t; **=Yt,) & (t1° =Y° t3) as a biconditional.

Subcase 1.1 (=) Assume t; **=Y® t5. Then t, must be of the form y. From
the hypotheses, z <y [zs := ys] = z <} [z’ = ys’] and y Q7 [ys := zs] =
y<l’f[g/s' = xs']. Then by lemma 8, (z var=o 3/) & (25 =Y y),s0 (x =Y y) &
(x ®5 =Y y), and (t1 T=Y° t2) & (t1 ** =Y° to). Subcase 1.2 (<) Symmetrical.

Case 2. t; =t u.

Subcase 2.1 (=) Assume t; **=Y° t5. Then ¢, must be of the form ¢ u'.
From the inductive hypotheses, (t *5=¥s ¢) <:>’(t = t") and (u **=¥° ') &
(u*$ =¥ u'). Then (z,f u =g t'u') & (tu® =¥ ¢ u') by definition 9 and so
(t1 *5=Y5 t9) < (81 ®° =Y° to). Subcase 2.2 (<) Symmetrical.

Case 3. t; = \z. t.

Subcase 3.1 (=) Assume t; “*=Y° t5. Then ¢ must be of the form ¢, = Ay. u.
By definition 9, ¢ *#*$=Y¥"¥% 4, and we need to show ¢ *#*¥ =YY% . From the
inductive hypothesis, (t T##S=YYS ) & (¢t 508 =YV y) if

((lz == sl = [ly = ysll) & (o = 2zs'[| = [ly = ys'l])) A
(Vo' 2’ eFVit = o' <V [zuas:=yuys|=2' W[z :zs =y ys]

) A
My vy eFViu = ¥y G yzysi=zuas|=y <V [y mys' =z xs'])

The first conjunct clearly follows from the hypotheses. For the other conjuncts,
if ' = x, then both substitutions on z' yield y. Likewise if y’ = y, then both
substitutions on gy’ yield z. If ' # x or y’ # y, then the substitutions simplify to
the cases covered by the hypotheses, as then ' € FVy(Az. t) or y' € FV1(Ay. u).
Subcase 3.2 (<) Symmetrical.



COI‘OllaI‘y 21. N(.T € FV; tl) A N(y € FV; t2) = (tlm::mszg::ys to & tlmszgs tg)
Proof: Directly from theorem 20, whose antecedents are proved by definition 4.

Definition 22. This 8-argument notation contextually relates two substitutions
S1, S2 on sets of variables r1, ro, relative to before/after contexts on both sides.

’ / def
sumr =g e <s = (las'll = llys'l) A
Vey zer, Nyer Nz B =0y >

var— o

(z Qf s1) "' =5 (y < 52))
Theorem 23 (Contextual respectfulness of substitution).

t =Y by A s (FVL 1) 50 =H (FVL ) <50 =
(t1 <1 81) ™% =¥ (t2 <q 82)

Proof: by strong rule induction on t; **=Y° t5. There are three cases.

Case 1. We have z **=4° y and s; = {z} 75 =V5 {y} < s2, andso = {3 =4"y
by definition 9 and then (z <V s1) “' =Y (y QU s3) by definition 22. The goal is
(x <1 81) " =¥ (y <1 $2), which follows by definition 6.

Case 2. uy v1 "°=Y° ug v, 80 uy “*=Y° uq, v1 **=Y° vy by definition 9, and

S1 > (FVl u1 UFVy ’Ul) zs' —ys' (FVl us U FVy ’1}2) < S9.

s —yYs

By definition 22, this implies s; = FV1 u; zs' —ys' FVi us < s2 and

s —ys

s1 = FVi 1y ;glzggl FVi vy < s2. The goal to be shown is

(U1 v1 <1 81) zS’EgS’ (UQ v2 <1 82) (goal)
p= (U1 <1 81) (Ul <1 81) zs Egs (U,Q <1 82) (’1}2 <1 82) (defn. 6)

p= (U1 <1 81) wlegsl (U,Q <1 82) A (Ul <1 81) wlegsl (Ul <1 82) (defn. 9)

These last two conjuncts are implied by the inductive hypotheses.
Case 3. Ax. uy "*=Y% Ay. u,, so ug **=Y"Y% 4y, and we also have

s1 = (FV1 wq — {2}) zs' =y’ (FV1 uz — {y}) < s2.

rs —ys

The goal is (Az. uy < s1) “’ngl (\y. ug <i s2). According to definition 6, let =’
and y’ be the new bound variables replacing x and y induced by the substitutions
s1 and s2. Then by definition 9 the goal becomes

(ug <1 ((z = a') = s1)) @528 =0305 (g <y ((y == y') == 82))
Using the inductive hypothesis, it suffices to prove
((z:=a") 1 51) = (FVq up) 2525 =50 (FV1 uo) < ((y == y') 2 52)
By definition 22, this means that given

Ve y". a2 € FVy ug — {z} AN y" € FVi ua — {y} A 2" ZE=U8 " = (%)
(2" <af 1) * =L (" < 52)



we must prove

\v/wll yll- mII c FV]_ Uy A yll c FV]_ Ua A QZ” x::msEy::yS yll =

var (e

(2 < (0 = ') = 5)) =50 =4 (7 QY (g = ) = 52))
This is proven by taking four cases on whether or not z” = x or y’ = y. If both
are equal, the goal’s consequent is true by definitions 4, 7, and 9. If one is equal
and the other not, then the antecedent is false by definition 7. If both are not
equal, then the goal simplifies using those definitions and corollary 21 to

" €FVyur A y'"€FVyuy A 2" ZE =Yy =

(" < 51) =0 (" < 52)
and since " # z and y" # y, this is proven by (). Corollary 21 applies because
z' and gy’ were chosen by variant not in the free variables of u; <11 s1 and us < $».

Corollary 24 (Respectfulness of substitution).
t1 =q ta A (VCE zeFVi ty = (.T <111) 81) =a (.T 411) 82)) =
(tl <1 81) =u (tg <1 82)

Proof: directly from theorem 23 with empty variable lists. Because of the re-
spectfulness of FVy, FVy t; = FV; to.
This enables us to recreate the definition of substitution on terms in A.

Definition 25 (Substitution on terms).

Respectfulness: t1 =4 ta A s1 EZ“bSt So = t1 1 81 =4 t2 <1 S2
def

Definition: t<ds = |[[t] < [s]]
Recreated definition:

r<4s = z4"s

(tu)y<s = (t<s)(uas)

(Az. u) <s = let 2’ =variant z (FVsubst s (FV u — {z})) in
Az’ (u<d ((x:=a') 0 8))

Respectfulness is proven from corollary 24. The recreated definition is proven
from respectfulness, theorem 12, and the definitions.

In addition to recreating these function definitions, we have also recreated the
theorems for induction, cases, and distinctiveness and one-to-one of constructors,
but not existence. For the most part these are direct analogs of A, except for:

Theorem 26. (Azi.t1 = A\xs. t2) &
(t1< [371 = .TQ] = t2) N (tQQ [372 = 561] = tl).
The proof is extensive and omitted for space.
In addition to the normal induction theorem, we have also proven a theorem
for induction on the height of a term. This will be frequently used.

Theorem 27 (Term height induction).

FVP. (Vz. P (z)) A
Mtu. Pt N Pu = P (tu)A
(Vt. (V¢ HEIGHT t = HEIGHT # = P t') = Va. P (\z. 1))
= (Vt. P t)



5 Barendregt Variable Convention

Barendregt [2] is the most encyclopedic compilation of lambda calculus theory,
and has been widely studied. He raises the issues of capture of bound variables
and the fallacies that may result, but then removes those issues by declaring
what has become known as the Barendregt Variable Convention (BVC):

“2.1.12. CONVENTION. Terms that are a-congruent are identified. ...”

“2.1.13. VARIABLE CONVENTION. If My, ..., M, occur in a certain mathe-
matical context (e.g. definition, proof), then in these terms all bound variables
are chosen to be different from the free variables. ...”

“2.1.14. MoRAL. Using conventions 2.1.12 and 2.1.13 one can work with -
terms in the naive way. Naive means that substitutions and other operations on
terms can be performed without questioning whether they are allowed.”

This convention greatly simplifies the proof of the Church-Rosser theorem.
However, at first glance, it appears to simply ignore the issues of capture, and
some have claimed this is incomplete at best. However, we have found a way to
conduct proofs in the style of the BVC using a special-purpose tactic constructed
especially for inductive proofs in the lambda calculus. Here is an example of its
use to prove Barendregt’s Substitution Lemma, 2.1.16.

Lemma 28 (Substitution lemma). If x #y and x ¢ FV L, then
M<az:=N|<dly:=L] = MAly:=L]<Qz:=Ny:= L]

Proof: by height induction on the structure of M. There are three cases.
Case 1. M is a variable.
Case 1.1. M = z. Then both sides equal N <[y := L] since = # y.
Case 1.2. M = y. Then both sides equal L, for « ¢ FV L implies
Lz :=Z] =L for all terms Z.
Case 1.3. M = z, where z # z,y. Then both sides equal z.
Case 2. M = My M>. Then the statement follows from the induction hy-

potheses and the definition of substitution.
Case 8. M = Ax'. M;. The resulting goal in HOL is

Lam x’ M <[ [(x,M] <[ [(y,1)] =
Lam x’ M <[ [(y,L)] <[ [(x,N <[ [(y,L)D]
0. !t’.
(HEIGHT M = HEIGHT t’) ==>
“(x=y) /\ “(x IN FV L) ==>
(t> <[ [(x,M] <[ [(y,L)] = ¢’ <[ [(y,L)] <[ [(x,N <[ [(y,L)DD
1. "G =1y
2. “(x IN FV L)

By executing the special tactic SIMPLE_SUBST_TAC, we achieve

Lam z (M’ <[ [(x,0] <[ [(y,L)1) =
Lam z (M” <[ [(y,L)] <[ [(x,N <[ [(y,L0DD)



0. !t’.
(HEIGHT M = HEIGHT t’) ==>
“(x =y) /\ “(x IN FV L) ==>
(t> <[ [(x,M] <[ [(y,L)] = ¢’ <[ [(y,L)] <[ [(x,N <[ [(y,L)DD
“(x =y
“(x IN FV L)
“(z = x?)
“(z IN FV N)
“(z IN FV L)
“(z =y)
“(z = x)
“(z IN FV M)
“(z IN FV M DIFF {x’})
“(x=1y) /\ “(x IN FV L) ==>
M <[ [(x,M)] <[ [(y,L)] =M <[ [(y,L)] <[ [(x,N <[ [(y,L)DD
HEIGHT M = HEIGHT M’
Lam x> M = Lam z M’

= O 00 ~N O O WN -

(@]

= e
N =

The abstraction Az'. M has been shifted to Az. M', where z and M’ are new.
This is stated directly in (12). z has been chosen so as to avoid all free variables
present in the proof, as is seen in (3) through (9). (10) is the specialization of
the height inductive hypothesis (0) for M’, and simplified by (11). Most impor-
tantly, for this choice of z and M', the substitutions may be treated naively, as
is accomplished in the goal, where they have penetrated to the bodies of the
abstractions with no concerns about capture, “in the naive way.”

To finish the proof, resolve (10) with (1) and (2) and rewrite the goal.

This achieves almost the same ease and simplicity of reasoning as the BVC,
requiring only that we use height induction and that we shift the abstractions
away from possible captures with SIMPLE_SUBST_TAC.

6 Reduction

Following Barendregt [2] section 3.1, we consider reduction in a general setting.

Definition 29. A binary relation R on A is compatible (with the operations) if
forall M, M', Z € A, x € var,

RM M = R(ZM)ZM') AN RMZ)M' Z) A RAz. M)(\z. M)

Definition 30. 3 is defined by rule induction, by the single rule

B ((Az. M) N) (M <[z := N])

Definition 31. If — is a binary relation, the reflexive closure of — (notation:
—7=) is the least relation extending — that is reflexive. The transitive closure
(notation: —*) is defined similarly. —=* is the reflexive, transitive closure.

Each closure has its own inductive principle for proofs.



Definition 32. Let R be a notion of reduction on A, that is, a binary relation
on A. Then R induces the binary relations

—R one step R-reduction,
>R R-reduction and
=R R-equality,

inductively defined by rules as follows.
— R is the compatible closure of R:

R M N M —-r N M —r N M —gr N
M —-r N ZM—rZN MZ—srNZ Az. M —-g Ax. N’

—»p is the reflexive, transitive closure of —g:

M —rg N M—»RN,N—»RL
M - N M —»p M M —»gr L )

=g is the equivalence relation generated by —g:

M—»RN M:RN M:RN,N:RL
M =g N N=pM M=gL '

These relations are defined in HOL with Myra VanInwegen’s rule induction pack-
age. [5] In addition to the weak and strong rule induction principles provided,
we have also proved height-based generalizations of these.

Definition 33 (Diamond property). Let — be a binary relation on a set.
Then — satisfies the diamond property (notation — = Q) if

VM My Ms. M — My N M — My = E|M3.M1>—>M3 A My — Ms
Definition 34 (Church-Rosser). A notion of reduction R is Church-Rosser
(CR) if —»g satisfies the diamond property (— g = 0).

7 The Church-Rosser Theorem

We follow Barendregt’s presentation [2] of the proof by Tait and Martin-Lof.
Theorem 35. Let — be a binary relation on a set. Then — E ¢ = —* = 0.
Proof: by two nested inductions on the transitive relation.
Definition 36. Let + be defined by the rules

Mw M , NwN'

O A Ve (3) MN w M N
(2) M‘H‘)M’ (4) MH‘)MI,N-H-)NI
Az. M+ Az, M’ (Az. M) N + M'Qz:=N']"

This definition is accompanied by strong and weak rule induction principles. In
addition, we prove height-based generalizations of these principles.



Lemma 37. (Az. t; = Ay. t2) = (t1 Q[z:=u] = t2 <[y :=u])
Proof: By theorem 26 eliminate ¢;, then use height structural induction on ts.
Theorem 38. N+ N' = M <[z:=N]+ M Q[z:= N'].

Proof: by height induction on the structure of M. There are three cases:

Case 1. Show y < [z := N]# y < [z := N']. If y = x, then this simplifies to
N 4 N', which is given. If y # z, it becomes y + y, true by definition 36(1).

Case 2. Show tu < [z := N]+ tu <[z := N'|. By definition 6, this is
(t<[z:=N]) (u<]z:=N])+(t <[z := N']) (u <[z := N']). This follows from
the inductive hypotheses and definition 36(3).

Case 3. Show Ay.t [z = N]+ Ay.t < [z := N'|. We shift \y. ¢ to
Ay'. t' such that capture cannot occur (as done in lemma 28). Then the goal
is \y'. (' <[z := NJ)+ Ay'. (' <[z := N']). The inductive hypothesis gives us
t' <[z := N]+ t' <[z := N']. The goal is solved by this and definition 36(2).

Lemma 39. (A\z.t1 = Ay. t})) A t1 #ta = (Az. ta = Ay. (t2 <[z :=y]))

Proof: The conclusion is true if y ¢ FV(Az. t2). From t; 4 t2, FV t5 C FV t4, so
it suffices if y ¢ FV(Az. ¢1). This follows from Az. t; = Ay. ¢].

Lemma 40. (Az.t; = Ay. ¢]) Aty te = )tz =yl
Proof: by height strong rule induction on t; + ts.
Theorem 41. M+ M' A N+ N' = M Q[z:=N]w M <[z:=N'].

Proof: by height strong rule induction on M + M'.

Case 1. M + M' is M + M. Then the goal follows from theorem 38.

Case 2. M + M' is t; uy + t3 uz, and is a direct consequence of t; +>
t2, u1 + uz. By the inductive hypotheses, t1 < [z := N] # t2 < [z := N']
and u; < [z := N] # us < [z := N']. Then (¢; <[z := N]) (u1 <[z := NJ]) +
(t2 <[z := N']) (uz < [z := N']), which is M <[z := N]+ M' <[z := N'].

Case 3. M + M' is (Ay. t1) ug + t2 < [y := us), and is a direct consequence
of ty 4 to, uy + us. Then

M«z:=N] = ()\y.tl)u1<l[m::N]
)\z(

= ( [z := NJ)) (w1 9 [z := N]) (1)
+ [:r—N]<l[z—U2<l[:r—N’]] (2)
= 1 Az =] <z = N'] (3)
= t2<1[y —’LL2]<][£L’ —N] (4)
= M'4z:=N'].

Notes: (1) shifting Ay. 1 to Az. ¢} so no captures can occur. Then by ¢; +» 2 and
lemmas 39 and 40, we have Ay. to = Az. t}, and ¢ + t}, where t), = t, <[y = 2].
(2) by the induction hypotheses on | + t5 and u; > us.
(3) by lemma 28, since z # x and z ¢ FV N.
(4) by lemma 37, t2 < [y := us] = th < [z := us], since Ay. t2 = Az. t5.



Case 4. M + M'is \y. t1 ++ Ay. t2, and is a direct consequence of t1 +# t5. We
shift the abstractions to Az. ¢] and Az. #}, so no captures can occur. By lemma
40 and t; + t2, we have ¢} +» t2 < [y := z]. By theorem 26, t5 < [y := z] = t}, so
t} + th. Then

M«lz:=N] = /\y t1<1[a: = N]

= Az (fy Qfz:= N])

+# Az. (th <[z := N']) by the ind. hypothesis on t| + ¢,
= y. (t2 <o = N)

= M’ <[z :=N'].

Lemma 42. (i) x#t; = tx =2
(ii)tu-H—)t2 =
Gt'u. tao=t'u Atwt! AN uwau) Vv
Frxtrtiu. t=Xx.t1 ANta=t)<z:=u'] Aty +t] A uwu)
(ii)) M.t ts = (At to =X t' A tt)

Proof: by an easy application of the inversion theorems of the definition of +>.
For (iii), we have \xz. t = \a'. |, ta = A\a'. t}, and ¢] + t,. Then by lemmas 39
and 40 with ¢} # t, we can take ¢ = t, < [z := z].

Theorem 43. +> satisfies the diamond property (+# |= ¢).

Proof: by strong rule induction on M + M; it will be shown that for all M +# M,
there is a M3 such that My +» M3 and My + Ms3.

Case 1. M + M, because M = M;. Then we can take M3 = M.

Case 2. M + M, is Az. t + Az. t' and is a direct consequence of ¢+ t'. Then
by lemma 42(iii), My = Az. t". By the induction hypothesis there is a term ¢’
such that ¢’ +# """ and ¢t + ¢, and we can take Mz = A\z. t'".

Case 3. M +» M is t u +» t' u' and is a direct consequence of ¢ + &', u +# u'.
By lemma 42(ii), there are two subcases.

Subcase 3.1. My = t'" v with t #t", u+>u”. Using the induction hypotheses
in the obvious way gives us " and w"’ with ¢ + "', t" +» t"", and similarly for
the u’s. Then we can take M3 = t""" u'".

Subcase 3.2. t = Ax. t1, My =t{ <[z :=u"] and ¢; + ¢}, u # u”. By lemma
42(ii1), we have t' = \z. t} with t; +» ¢]. By the definition of +, Az. t1 + . ¢!
which with the induction hypothesis for ¢ + ¢/, gives us " with Ax. t] + ¢,
Ax. t] + t". By lemma 42(iii), t""" = Az. ¢} with | # ¢ and ¢{ + ¢{". The
induction hypothesis for u +# u' gives us v/ with v’ + o', u" +» u'"’. Then by
theorem 41, we can take M3 = t{" < [z := u""].

Case 4. M + My is (Az. t) u + t' < [z := u'] and is a direct consequence of
t 4 t', uw+ u'. Again, there are two subcases.

Subcase 4.1. My = (Az.t") w" with ¢ + t", u + u”. Using the induction
hypotheses in the obvious way give us ¢, u"’. Then by theorem 41, we can take
]\4’3 — tlII [.’If _ uIII]

Subcase 4.2. My =t} < [z1 := u"] with t; + ¢], uw v, and Az. t = Ax;. t;.
By lemmas 39 and 40, Az. " = Az;.t] and ¢+ t" where t" = ¢} < [z; = z].



Using the induction hypotheses in the evident way gives us ¢ and v’ with
t ettt u ) w4 w'" Since Az, t" = Az tY, by lemma 37 we
have t{ < [z1 := u"] = t" < [z := u"], and then by theorem 41 we can take
Ms; =t" <z :=u"].

The above fills an omission by Barendregt. Though M = (Az.t) u be the
same in M +# M; and M + M, the x’s and t’s may be different.

Theorem 44. —»3 is the transitive closure of + (—g = +*).

Proof: Note that as relations -5 C +# C —g3. Since — 4 is the transitive closure
of =73, so it is of #. The HOL proof takes 14 lemmas and theorems to support
this, many using induction, but here we give only Barendregt’s justification.

Theorem 45 (The Church-Rosser Theorem). 3 is CR.
Proof: by definition 34 and theorems 35, 43, and 44.

8 Summary and Conclusions

This proof of the Church-Rosser theorem accomplished a separation of concerns,
where alpha-equivalence and beta-reduction were analyzed in two distinct layers.
As a first, this modularized and simplified the proof over other efforts [7,9].

The creation of the real lambda calculus as a quotient relied upon the proof
that substitution respected alpha-equivalence. This methodology and proof for
a completely-defined substitution function is a new contribution.

We have justified the controversial BVC [2] and validated it for its use in this
proof. Now researchers can use the BVC with increased confidence.

The lambda calculus is an archetype of general programming languages. Like-
wise, this proof is a well-engineered prototype for general language foundations.

For more information on this proof and the new HOL tools created, see [5].

Soli Deo Gloria.

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer-Verlag 1996.

2. Barendregt, H. P.: The Lambda Calculus. North-Holland, 1981.

3. Gordon, A. D., Melham, T.: Five Axioms of Alpha-Conversion, in Proceedings
of 9th International Conference on Theorem Proving in Higher Order Logics,
(TPHOLs’96), Turku, Finland, August 1996, LNCS 1125, 173-190.

4. Hindley, J. R., Lercher, B., Seldin, J. P.: Introduction to Combinatory Logic. Cam-

bridge University Press, 1972.

Homeier, P. V.: http://wuw.cis.upenn.edu/"hol/lamcr.

6. Shankar, N.: A Mechanical Proof of the Church-Rosser Theorem, Journal of the

ACM Vol. 35, No. 3, July 1988, 475-522.

Shankar, N.: Metamathematics, Machines, and Godel’s Proof. Cambridge, 1994.

Stoughton, A.: Substitution Revisited. Theoretical Comp. Sci. 59, 1988, 317-325.

Vestergaard, R., Brotherston, J.: A Formalized First-Order Confluence Proof for

the A-Calculus using One-Sorted Variable Names. To appear in 12th International

Conference on Rewriting Techniques and Applications (RTA 2001).

ot

© N



