
Copyright © Praxis High Integrity Systems 2008 Slide 0

A Retrospective on Constructive

Verification

Rod Chapman

Praxis High Integrity Systems

Copyright © Praxis High Integrity Systems 2008 Slide 1

Contents

• Well…it was was 21(ish) years ago

today…

• Retrospective vs Constructive

verification

• Getting to 4th base…

• A future?

Copyright © Praxis High Integrity Systems 2008 Slide 2

Contents

• Well…it was was 21(ish) years ago

today…

• Retrospective vs Constructive

verification

• Getting to 4th base…

• A future?

Copyright © Praxis High Integrity Systems 2008 Slide 3

Well it was 21(ish) years ago today

Copyright © Praxis High Integrity Systems 2008 Slide 4

Well it was 21(ish) years ago today

Copyright © Praxis High Integrity Systems 2008 Slide 5

So what…

• PVL/Praxis/SPARK team have been

– Designing programming languages…

– Building static analysis tools…

– Actually trying to use them on real

projects…

– …for what seems like a long time.

• Here are a few reflections on what

we’ve learnt and what’s going on now…

Copyright © Praxis High Integrity Systems 2008 Slide 6

Contents

• Well…it was was 21(ish) years ago

today…

• Retrospective vs Constructive

verification

• Getting to 4th base…

• A future?

Copyright © Praxis High Integrity Systems 2008 Slide 7

Early days…

• UK Military Aerospace

– Software begins to appear in military

aircraft in about 1985-1990

– No tools exist…what can you do?

– This led to retrospective style of

analysis

Copyright © Praxis High Integrity Systems 2008 Slide 8

Retrospective analysis

• Typical process

– Procure/take delivery/pay for box
containing software

– Peer at it for a long time

– Report bugs that you find. Hope
they might be fixed.

– Try to decide to fly aeroplane or
not…

•(In the mean time, some tools get
developed – SPADE, MALPAS etc)

Copyright © Praxis High Integrity Systems 2008 Slide 9

Retrospective analysis

• Analysis typically carried out by

buyer/evaluator after development and

“test”.

• Observations:

– Perception of limited utility: analysis

is hard, slow, and subject to human

frailty.

– Little motivation for the developer to

change their ways or do better

Copyright © Praxis High Integrity Systems 2008 Slide 10

Retrospective analysis

• Key observation

– Utility of retrospective analysis critically

depends not only on quality/power of

tools, but also on the quality of the

software under analysis.

– Poorly designed programs defy analysis by

any method, tool or person.

•Example: Chinook HC2 FADEC

– Even programs which “seem to work” and

“pass testing” defy analysis.

Copyright © Praxis High Integrity Systems 2008 Slide 11

Retrospective analysis

• Is this still true?

– Huge increase in tool power + 15
iterations of Moore’s Law.

• But…

– Massive increase in program size
and complexity

– Programming languages didn’t
help…they got bigger, more
ambiguous, more dynamic…

• Who is winning this race?

Copyright © Praxis High Integrity Systems 2008 Slide 12

Constructive Analysis

• The big idea:

– Place tools in hands of developers,

to be used all the time…

•Use discipline to manage utility

– Deliver system with static analysis

evidence

– Regulator and/or customer can

reproduce evidence if they want.

Copyright © Praxis High Integrity Systems 2008 Slide 13

Constructive Analysis

• Adoption is hard – requires major

change of lifestyle for most developers.

• We encounter enormous resistance to

the adoption of discipline.

– Nobody likes being told what to do…

Copyright © Praxis High Integrity Systems 2008 Slide 14

Contents

• Well…it was was 21(ish) years ago

today…

• Retrospective vs Constructive

verification

• Getting to 4th base…

• A future?

Copyright © Praxis High Integrity Systems 2008 Slide 15

Getting to 4th base…

• A “playing field” for static analysis tools

– 1st base: basic dumb mistakes –

subset/coding standard etc.

– 2nd base: absence of undefined behaviour

(e.g uninitialized variables)

– 3rd base: type safety

– 4th base: partial corrrectness, safety and

security properties, application and

domain specific properties

– 5th base+: stuff we haven’t even thought of

yet…

Copyright © Praxis High Integrity Systems 2008 Slide 16

Getting to 4th base…

• Note: at 4th base and above, desired
properties are application and domain
specific.

– There is no “list of vulnerabilities” that can
be enumerated or can be “built in” to a
tool.

• Overly generic description (e.g. “SQL Injection”) leads
to hopeless false-positive rate from tools.

– Many languages allow for user-defined
properties, via assertions/contracts (e.g.
SPARK, Eiffel) or via user-written “Rules” or
“Checkers” (e.g. Coverity)

Copyright © Praxis High Integrity Systems 2008 Slide 17

Getting to 4th base…

• SPARK gets to 4th base (just…)

• How?

– Careful (some would say
Draconian…) subset and
contractualization of language.

– Favour soundness above all other
design goals.

– Build soundness – base N+1
depends on base N analyses being
OK first.

Copyright © Praxis High Integrity Systems 2008 Slide 18

A worrying conversation

• Customer: “What list of bugs does your
tools find?”

• Rod: “There’s no such list – it’s a
general-purpose verification
framework”

• Customer: “What list of bugs does your
tools find?”

• Rod: “Anything that you can express as
a predicate in first-order logic”

• Customer: “Eh?” (and leaves…)

Copyright © Praxis High Integrity Systems 2008 Slide 19

A worrying conversation

• Where tools and languages support

verification of user-defined properties:

• Perhaps we might ask:

– “What properties can be expressed? What

properties can’t?”

– “What is the soundness, completeness,

and efficiency of the checking algorithm?”

• Many tool vendors don’t seem to be very

forthcoming with this information.

Copyright © Praxis High Integrity Systems 2008 Slide 20

Does Soundness Matter?

• “Soundness doesn’t matter”

– Who says?

– Well…err…All tool vendors whose

tools are unsound.

• Or does it…?

Copyright © Praxis High Integrity Systems 2008 Slide 21

Does Soundness Matter?

• In retrospective analysis mode, it appears not

– finding 90% of bugs is better than none!

• But...if we are to move to constructive

evidence-based assurance, soundness will

matter

– Would you present evidence to an

evaluator if you know the tool that

generated it can be unsound?

– As an evaluator, would you accept such

evidence?

Copyright © Praxis High Integrity Systems 2008 Slide 22

Does Soundness Matter?

• A warning…

• Soundness is a one-way trip…

• Once achieved, customers will get used

to it very rapidly, and come to depend

on it.

– You’ll never go back…

Copyright © Praxis High Integrity Systems 2008 Slide 23

Intermission…

• Enough moaning…

• Here’s comes some code…

Copyright © Praxis High Integrity Systems 2008 Slide 24

An example “4th Base” verification

in SPARK.

• SQL Injection

– Actually, just a special-case of input

data validity.

– It’s both easy, and very hard…

Copyright © Praxis High Integrity Systems 2008 Slide 25

SQL Injection

• Imagine a simple SPARK package that is

used to query a database:

package DB

--# own State;

--# initializes State;

is

procedure Query (SQL_String : in String;

Result : out String);

--# global in State;

--# derives Result from State, SQL_String;

end DB;

Copyright © Praxis High Integrity Systems 2008 Slide 26

SQL Injection

• Dumb implementation of user-generated
query:

-- get input from user, whatever it is…

Read_Input (User_String);

-- construct SQL query string from user input

Form_Query (User_String, SQL_String);

-- Chuck the resulting query at the database

DB.Query (SQL_String, Result);

• This implementation is weak in that there is
no checking that the user-provided string is
not malicious, mal-formed, or just wrong.

Copyright © Praxis High Integrity Systems 2008 Slide 27

SQL Injection

• A better SPARK Database Interface:

package DB

--# own State;

--# initializes State;

is

function Valid_Query

(SQL_String : in String) return Boolean;

--# global in State;

procedure Query (SQL_String : in String;

Result : out String);

--# global in State;

--# derives Result from State, SQL_String;

--# pre Valid_Query (SQL_String, State);

end DB;

Copyright © Praxis High Integrity Systems 2008 Slide 28

SQL Injection

• Now what happens?

-- get input from user, whatever it is…

Read_Input (User_String);

-- construct SQL query string from user input

Form_Query (User_String, SQL_String);

-- Chuck the resulting query at the database

DB.Query (SQL_String, Result);

• You get an unprovable precondition VC

for the call to DB.Query

Copyright © Praxis High Integrity Systems 2008 Slide 29

SQL Injection

• The unprovable VC “reminds” you to

bother to check, so I re-write the code:

-- get input from user, whatever it is…

Read_Input (User_String);

-- construct SQL query string from user input

Form_Query (User_String, SQL_String);

-- Check validity of generated query

if DB.Valid_Query (SQL_String) then

-- Chuck the resulting query at the database

DB.Query (SQL_String, Result);

else

Error_Handler;

end if;

Copyright © Praxis High Integrity Systems 2008 Slide 30

SQL Injection

• The offending precondition VC is now

provable.

• Easy huh?

• Well…not quite...there’s still no free

lunch…

Copyright © Praxis High Integrity Systems 2008 Slide 31

SQL Injection – The Catch…

• You have to write the bodies of

DB.Valid_Query and Error_Handler

• What defines a “Valid” query anyway?

– Look in your specification or security

policy

– You have got a specification, right?

• You end up having to specify error-

handling behaviour as well…

Copyright © Praxis High Integrity Systems 2008 Slide 32

Static analysis for engineer

“behaviour modification”

• The upshot of all this:

– A disciplined/formal/design-by-contract

implementation style forces robustness.

– This leads you to resolve issues in security

policy, requirements, and specification.

– The behaviour of engineers (eventually)

changes to deal with these issue “up-front”

rather than post-hoc.

Copyright © Praxis High Integrity Systems 2008 Slide 33

Contents

• Well…it was was 21(ish) years ago

today…

• Retrospective vs Constructive

verification

• Getting to 4th base…

• A future?

Copyright © Praxis High Integrity Systems 2008 Slide 34

A future?

• Who will win? Constructive or
Retrospective tools?

– Hopefully…both…

• All systems have many components –
some new, some highly critical, some
re-used, some COTS, some firmware,
written in multiple languages.

– There must be room for both styles
of analysis.

Copyright © Praxis High Integrity Systems 2008 Slide 35

A future?

• Why not use architecture to separate

the really critical stuff form the rest?

– Use sound constructive techniques

where soundness and assurance

really matter.

– Use other techniques for the

remainder.
• (Assuming we can make logical arguments for

separation and isolation of such components…)

Copyright © Praxis High Integrity Systems 2008 Slide 36

Praxis High Integrity Systems
20 Manvers Street

Bath BA1 1PX

United Kingdom

Telephone: +44 (0) 1225 466991

Facsimilie: +44 (0) 1225 469006

Website: www.praxis-his.com, www.sparkada.com

Email: sparkinfo@praxis-his.com

