A Rewriting-based Forwards Semantics for Maude-NPA

Santiago Escobar¹ Catherine Meadows² José Meseguer³ Sonia Santiago¹

¹Technical University of Valencia, Valencia, Spain ²Naval Research Laboratory, Washington DC, USA ³University of Illinois at Urbana-Champaign, USA

HotSoS, April 8, 2014

- 2 Maude-NPA: A Peek Under the Hood
- 3 Forwards Semantics
- 4 Soundness and Completeness
- 5 Implementation
- 6 Conclusion

- To prove properties of a program, we need make use of some logical sytem
- Different components, different aspects, different properties of a program may require different logical systems
 - This is especially the case in security, a many-faceted problem
- We need to show these different logics can work together, and what is proved in one system remains true in another
- In this talk, will show how applied this to a formal tool for cryptographic protocol analysis Maude-NPA

Problem Area: Symbolic Cryptographic Protocol Analysis

• Example: Diffie-Hellman Without Authentication

- $A \rightarrow B : g^{N_A}$ $B \rightarrow A : g^{N_B}$ $A \text{ and } B \text{ compute } g^{N_A * N_B} = g^{N_B * N_A}$ Well-known attack $A \rightarrow I_B : g^{N_A}$ $I_A \rightarrow B : g^{N_I}$
 - $\begin{array}{c} \bullet & I_A \\ \bullet & I_B \\ \bullet & I_A \\ \bullet & I_B \\ \bullet & A \\ \bullet & g^{N_I} \end{array}$
- A thinks she shares $g^{N_I * N_A}$ with B, but she shares it with I
- B thinks he shares $g^{N_I * N_A}$ with A, but he shares it with I
- Commutative properties of * and fact that $(G^X)^Y = G^{X*Y}$ crucial to understanding both the protocol and the attack

- Start with a signature, giving a set of function symbols and variables
- For each role, give a program describing how a principal executing that role sends and receives messages
- Give a set of inference rules and equations the describing the deductions an intruder can make
 - E.g. if intruder knows K and e(K, M), can deduce M, or;
 - d(K, e(K, M)) = M, where d is a decryption operator
- Assume that all messages go through intruder who can
 - Stop or redirect messages
 - Alter messages
 - Create new messages from already sent messages using inference rules

The Maude-NPA Tool

- A tool to find or prove the absence of attacks using backwards search
- Analyzes infinite state systems
 - Active intruder
 - No abstraction or approximation of nonces
 - If Maude-NPA finds path from initial state to insecure attack state, it is a genuine path
 - Unbounded number of sessions
 - If Maude-NPA terminates without finding path no such path exists
 - Problem is in general undecidable, so Maude-NPA may not terminate
 - Uses search-space pruning mechanisms making termination more likely
- Supports a number of equational theories, including: cancellation (e.g. encryption-decryption), AC, exclusive-or, Diffie-Hellman, bounded associativity, homormorphic encryption over various theories, various combinations, working on including more
- Executable semantics based on rewrite rules

- Logical system that can also be executed
 - In our case, as state-exploration-based cryptographic protocol analysis tool, Maude-NPA
- By proving things about the logical system, we can prove things about results of the execution
- If we want to make modifications to the tool, we make modifications to the semantics
 - Prove new semantics sound and/or complete to the old
 - Have applied this approach to extend the capabilities of Maude-NPA and prove that these extensions are sound and complete

- Require major changes to semantics in order to achieve the functionality we want
 - In our case, we needed to reverse the direction of the execution
 - In this talk, we show how we handled this problem

- 2 Maude-NPA: A Peek Under the Hood
- 3 Forwards Semantics
- 4 Soundness and Completeness
- 5 Implementation
- 6 Conclusion

Important Tools Used by Maude-NPA: Equational Unification

- Given a signature Σ and an equational theory E, and two terms s and t built from Σ:
- A unifier of s =_E?t is a substitution σ to the variables in s and t s.t. σs can be transformed into σt by applying equations from E to σs and its subterms
- Example: $\Sigma = \{d/2, e/2, m/0, k/0\}, E = \{d(K, e(K, X)) = X\}$. The substitution $\sigma = \{Z \mapsto e(T, Y)\}$ is a unifier of d(T, Z) and Y.
- The set of most general unifiers of s =?t is the set Γ s.t. any unifier σ is of the form ρτ for some ρ, and some τ in Γ.
- Example: $\{Z \mapsto e(T, Y), Y \mapsto d(T, Z)\}$ mgu's of d(T, Z) and Y.
- Given the theory, can have:
 - at most one mgu (empty theory)
 - a finite number (AC)
 - an infinite number (associativity)
- Problem can also be undecidable

Important Tools Used by Maude-NPA: Rewrite Rules and Narrowing

- A rewrite theory \mathcal{R} is a triple $\mathcal{R} = (\Sigma, E, R)$, with:
 - Σ a signature
 - (Σ, R) a set of rewrite rules of the form t → s
 e.g. e(K_A, N_A; X) → e(K_B, X)
 - E a set of equations of the form t = s
- Rewriting: If t is a ground term (no variables), $t \rightarrow_{\sigma,R,E} s$ if there are
 - a non-variable position $p \in Pos(t)$;
 - a rule $I \rightarrow r \in R$;
 - a substitution σ (modulo E) such that $t\theta =_E I$ and $s = \theta(t[r]_p)$
- Narrowing: If t is a symbolic term (may have variables) t →_{σ,R,E} s if there are
 - a non-variable position $p \in Pos(t)$;
 - a rule $I \rightarrow r \in R$;
 - a unifier σ (modulo E) of $t|p =_E?I$ such that $s = \sigma(t[r]_p)$.

• In favor of narrowing

- Narrowing wrt symbolic terms means you can handle a possibly infinite number of terms in one narrowing step
- For that reason, good for reasoning about infinite state systems
- In favor of rewriting
 - Rewriting simpler and faster than narrowing
 - Software support for rewriting (in particular, Maude itself!)
- Conclusion: Use narrowing when it can most benefit you, rewriting otherwise

Protocols Specified Using Strand Spaces

- Maude-NPA uses concept of strand spaces due to Thayer, Herzog, and Gutmann (2001)
- A strand is a sequence of messages representing the actions of a principal executing a role, or of an intruder making a computation
 - A negative term represents a message received by a principal
 - A positive term represents a message sent by a principal
- Example: Initiator's strand in DH

- Example: Attacker exponentiation strand in DH
 - :: nil :: [nil | -(GE), -(NS), +(exp(GE,NS)), nil]
- Note: Capital letters stand for logical variables, terms inside "::" are special variables used to construct nonces

- A state is a set of strands plus the intruder knowledge (i.e., a set of terms)
 - Each strand is divided into past and future
 - $[m_1^{\pm}, \ldots, m_i^{\pm} | m_{i+1}^{\pm}, \ldots, m_k^{\pm}]$
 - 2 Initial strand [nil | m_1^{\pm} , ..., m_k^{\pm}], final strand [m_1^{\pm} , ..., m_k^{\pm} | nil]
 - **③** The intruder knowledge contains terms $m\notin \mathcal{I}$ and $m\in \mathcal{I}$

$$\{ t_1 \notin \mathcal{I}, \ldots, t_n \notin \mathcal{I}, s_1 \in \mathcal{I}, \ldots, s_m \in \mathcal{I} \}$$

Initial intruder knowledge { t₁∉I,..., t_n∉I }, final intruder knowledge { s₁∈I,..., s_m∈I }

- Note that it is possible (and expected) for states to contain variables
- Since XE hasn't been received yet, we don't know what it is

- Expressed in terms of forwards executing rewrite rules
- Rewrite rule: a rule of the form $\ell \to r$ meaning "replace expression ℓ with expression r
 - SS & [$L \mid M^-, L'$] & { $M \in \mathcal{I}, K$ } \rightarrow SS & [$L, M^- \mid L'$] & { $M \in \mathcal{I}, K$ } Moves input messages into the past
 - ② $SS \& [L | M^+, L'] \& \{K\} \rightarrow SS \& [L, M^+ | L'] \& \{K\}$ Moves output message that are not read into the past
 - **③** SS & [$L | M^+, L'$] & { $M \notin I, K$ } → SS & [$L, M^+ | L'$] & { $M \in I, K$ } Joins output message with term in intruder knowledge.
 - SS & [l₁ | u⁺] & SS & {u∉I, K} → {u∈I, K} where [l₁ | u⁺] is a prefix of a strand in the protocol specification Introduces new strand or prefix of strand, and joins output message with term in intruder knowledge.
- To obtain backwards semantics, just reverse the arrows!

• Begin by specifying an attack state pattern

- An attack state pattern describes an insecure state and may contain variables
- Example : Attack state in which responder *B* has finished execution of protocol, apparently with initiator *A*, but attacker knows the secret

- Use backward narrowing via the rewrite rules, to determine if an initial state can be reached
- If you reach an initial state, you will have constructed a path to an instance of the attack pattern

- 2 Maude-NPA: A Peek Under the Hood
- 3 Forwards Semantics
- 4 Soundness and Completeness
- 5 Implementation
- 6 Conclusion

When We May Need Forward Execution

Practical Reasons

- Narrowing is powerful, but computationally expensive
- If you execute forwards instead of backwards, states will contain no variables, and you can use rewriting instead of narrowing
- Example: Suppose that you want to simulate protocol to see if it can reach a final state in absence of attackers
 - Narrowing is overkill

Theoretical Reasons

- In many cases, it is more natural to reason about forward rather than backwards execution
- We found this when developing a theory of indistinguishability for Maude-NPA

Important: Forwards semantics must be sound and complete with respect to backwards semantics

- Allows us to switch between forwards and backwards semantics
- We use simulation to verify protocol specified correctly using forwards semantics, but verify security using backwards semantics
- We use forwards semantics to formulate our indistinguishability framework, but prove indistinguishability using backwards semantics

- Maude-NPA already has a forwards semantics, obtained by reversing the backwards semantics
 - Why can't we just use that and save ourselves a lot of work?
- Backwards semantics contains too much information about the future!
 - Initial state contains all strands and intruder knowledge used to reach the final state
 - Part of the strand after the bar may need to contain variables
 - This is problematic for rewriting

- No variables allowed in state
- Only information about the past allowed, not the future
 - Terms *t*\$\vec{\mathcal{I}}\$ can't appear, since they represent future knowledge of the intruder
 - Information after the bar in a strand can't appear, since it represents future execution

Some Rules in the Forwards Semantics

Adding a positive term the intruder doesn't know already to a strand

$$\left\{ \begin{array}{l} \forall \left[u_{1}^{\pm}, \dots, u_{j-1}^{\pm}, u_{j}^{+}, u_{j+1}^{\pm}, \dots, u_{n}^{\pm} \right] \in \mathcal{P} \land j > 1 : \\ \left\{ SS \& \left\{ IK \right\} \& \left[u_{1}^{\pm}, \dots, u_{j-1}^{\pm} \right] \& \langle N \rangle \right\} \\ \rightarrow \\ \left\{ SS \& \left\{ u_{j} \uparrow_{N}^{M} \in \mathcal{I}, IK \right\} \& \left[u_{1}^{\pm}, \dots, u_{j-1}^{\pm}, (u_{j} \uparrow_{N}^{M})^{+} \right] \& \langle M \rangle \right\} \\ \qquad \qquad \mathsf{IF} \left(u_{j} \uparrow_{N}^{M} \in \mathcal{I} \right) \notin IK \end{array} \right\}$$

$$(1)$$

• Adding a strand that begins with a positive term the intruder doesn't know already

$$\begin{cases} \forall [u_1^+, \dots, u_n^\pm] \in \mathcal{P} :\\ \{SS \& \{IK\} \& \langle N \rangle\} \to \{SS \& [(u_1 \uparrow_N^M)^+] \& \{IK\} \& \langle M \rangle\} \end{cases}$$
(2)

- 2 Maude-NPA: A Peek Under the Hood
- 3 Forwards Semantics
- 4 Soundness and Completeness
- 5 Implementation
- 6 Conclusion

Definition (Lifting relation)

Given a symbolic \mathcal{P} -state S and a ground state s we say that s lifts to S, or that S instantiates to s with a grounding substitution $\theta : (Var(S) - \{SS, IK\}) \rightarrow \mathcal{T}_{\Sigma}$, writen $S >^{\theta} s$ iff

- for each strand :: $r_1, \ldots, r_m :: [u_1^{\pm}, \ldots, u_{i-1}^{\pm} | u_i^{\pm}, \ldots, u_n^{\pm}]$ in S, there exists a strand $[v_1^{\pm}, \ldots, v_{i-1}^{\pm}]$ in s such that $\forall 1 \leq j \leq i-1$, $v_j =_{E_P} u_j \theta$.
- for each positive intruder fact w∈ *I* in S, there exists a positive intruder fact w'∈*I* in s such that w' =_{E_P} wθ, and
- for each negative intruder fact w∉ I in S, there is no positive intruder fact w'∈I in s such that w' =_{E_P} wθ.

Ground State

```
[+(a; b; exp(g,n(a,1)))] &
{exp(g,n(a,1)) inI,
a inI,
b inI,
a; b; exp(g,n(a,1)) inI}
• Lifting via \theta = \{r \to 1\}
```

Theorem (Completeness)

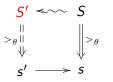
Given a protocol \mathcal{P} , two ground states s, s_0 , a symbolic \mathcal{P} -state S, a substitution θ s.t. (i) s_0 is an initial state, (ii) $s_0 \rightarrow^n s$, and (iii) $S >^{\theta} s$ then there exist a symbolic initial \mathcal{P} -state S_0 , two substitutions μ and θ' , and $k \leq n$, s.t. $S_0 \nleftrightarrow_{\mu}^k S$, and $S_0 >^{\theta'} s_0$.

Theorem (Soundness)

Given a protocol \mathcal{P} , two symbolic \mathcal{P} -states S_0 , S', an initial ground state s_0 and a substitution θ s.t. (i) S_0 is a symbolic initial state, and (ii) $S_0 \nleftrightarrow S'$, and (iii) $S_0 > \theta s_0$ then there exist a ground state s' and a substitution θ' , s.t. (i) $s_0 \to s'$, and (ii) $S' > \theta' s'$.

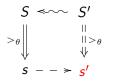
Proof of Soundness and Completeness

• (Lifting Lemma) Given rewriting step $s' \rightarrow s$ and lifting relation S $>_{\theta} s$ we can complete the diagram with S' as follows:



Soundness: Given a forward rewriting sequence iterate lifting lemma to get corresponding backwards narrowing sequence

(Grounding Lemma) Given narrowing step S ← S' and lifting relation
 S >_θ s we can complete the diagram with an s' as follows:



Completeness: Given a backwards narrowing sequence iterate grounding lemma to get corresponding forwards rewriting sequence

- 2 Maude-NPA: A Peek Under the Hood
- 3 Forwards Semantics
- 4 Soundness and Completeness
- 5 Implementation
- 6 Conclusion

- Implemented rewriting-based forward semantics in Maude
- Maude's support for rewriting made it possible to do this very quickly
- Implemented some heuristic state space reduction techniques to reduce state space explosion
 - Plan to investigate these further in the future, in particular adapting Maude-NPA's state space reduction techniques to a forwards setting
 - Expect soundness and completeness result to help us here
- Applied it two various protocols in the literature, tool was able to reproduce attacks found by Maude-NPA

- 2 Maude-NPA: A Peek Under the Hood
- 3 Forwards Semantics
- 4 Soundness and Completeness
- 5 Implementation
- 6 Conclusion

- We started out wanting a theoretical tool to help us reason about indistinguishability, but we wound up with
 - A novel executable semantics for model-checking cryptographic protocols
 - A new logical foundation for Maude-NPA, designed for model-checking
 - The beginnings of a new crypto protocol model-checker
- And we got a new theoretical tool to help us reason about indistinguishability!