A Solver for Non-linear Boolean Functions

W. Mark Vanfleet, Michael Dransfield
National Security Agency
9800 Savage Road, Suite 6709
Fort George G. Meade, MD 20755-6709

E-mail: wvanflee@radium.ncsc.mil vspace*6mm

John Franco, Robert Price, John Schlipf, Jeff Ward, Sean Weaver
Computer Science, ECECS
University of Cincinnati
Cincinnati, OH 45221-0030

E-mail: franco@ececs.uc.edu

March 13, 2001

1 Executive Summary

This paper describes a tool we call State Based Satisfiability (SAT) Solver (SBSAT). SB-
SAT is being developed jointly by NSA, Cryptographic Evaluation Group (CEG), and the
University of Cincinnati, as funded by the NSA, Information Assurance Research Organiza-
tion (IARO). The primary goal of the SBSAT Solver is to combine the strengths of existing
Satisfiability tools and Binary Decisions Diagram (BDD) based tools into a single unified
tool which allows a user to control the solver directly from his or her native domain space.
SBSAT has an input interface which pre-processes the user’s problem, potentially modeled
in various forms (e.g. BDDs, CNF, etc.), possibly to solution, but more often to a new
representation which is amenable to selected search algorithms. Rather than translate input
expressions to CNF, as is done with traditional SAT solvers, SBSAT attempts to search in
a domain space as close to the original function set as possible. Doing so avoids loss or mu-

tilation of domain-specific knowledge which is often very helpful during search, but requires
a new (non-CNF) form of SAT search.

The new search paradigm is based on State Machine Branching (SMB). In order to solve
problems in a user’s domain space, we created what we call State Machines Used to Represent
Functions (SMURFs). SMURFSs contain pre-computed information about the possible future
outcomes of variable assignments given any reasonable partial assignment. A single SMURF
maintains such information for an entire Boolean function, not a single clause, and typically
requires a relatively large amount of memory. The ability to maintain a useful collection of
SMURFSs has only recently become practical as even laptop computers now carry 1/2 GB of
RAM routinely. Thus, we present SMURF's as an effective means to trade space for time.

Using a SBSAT prototype, problems too difficult for BDD-based solvers or CNF-based
solvers have been solved reasonably well. This initial success is due, in part, to providing
the user with more effective control over search in his original familure domain space. In
particular, the development of heuristics which make sense for various classes of functions.

Discovering effective heuristics for SMURFs and developing effective SMB search pro-
cedures have become an important secondary goal of the research contract. We have un-
dertaken the task of lifting all of the concepts from traditional, even state of the art, SAT
Solvers to SMURF's and SMB. We have been particularly successful in doing this with heuris-
tics (procedures for deciding which variable and value to branch on) where we are able to
take advantage of the SMURF data structures and develop heuristics that are more powerful
than any existing heuristics in use in other tools. We have also developed effective pruning
mechanisms in SMB. Because CNF data structures can be embedded into the SMURF data
structure, we must do at least as well in search-space economy as other CNF tools. But,
we can often do much better because we can combine many CNF’s into a single SMURF to
obtain inferences that the traditional CNF SAT Solver would have taken much longer to find.
We have also generalized the concept of autarkies! for pruning even further. Handling of
autark assignments can be added relatively painlessly because information to support their
discovery and use can be pre-computed prior to branching.

This brings us to another goal of the contract which is to develop data structures that
allow pre-computing or memoizing anything that can be effectively pre-computed or memo-
ized, and that can be of use in the SMB brancher. Any information that the SMB brancher
may derive more than once is a candidate to be pre-computed. Because of pre-computation,
we are able to efficiently bring generalized autarkies into the brancher. The literature in the
CNF world is currently limited to what is known as linear autarkies. We are able to detect
and use generalized non-linear autarkies in our SMB brancher. Due to pre-computation, we
are able to incorporate a technique that belonged heretofore exclusively to the BDD world,
namely simple existential quantification: during search, whenever a variable only occurs in
one SMURF we are able to existentially quantify that variable away. In addition, we memo-
ize lemmas® (a very promising area of research in the CNF SAT world). We are again able to
generalize lemmas based on SMURF's rather than CNF’s. Putting all of these techniques to-
gether we believe that we have developed a remarkably effective hybrid BDD and non-linear
SAT solver. We have captured the best of both worlds. We have exceeded the capabilities
that either world could have achieved on its own.

KEY WORDS: Binary Decision Diagrams, BDD, Satisfiability, SAT, State Machines,
State Machines Used to Represent Functions, Smurf, Branching, State Machine Branching,
SMB, State Based SAT Solver, SBSAT, Conjunctive Normal Form, CNF SAT, Non-CNF
SAT, Non-Linear SAT, Davis-Putnam-Loveland Procedure, Lemmas, Heuristics, Linear Au-
tarkies, Non-Linear Autarkies, Existential Quantification, Boolean, Logic

! Autarkies are defined later but to get a sense of these objects now we mention that pure literals in CNF
formulas are examples of very simple autarkies.
2Minimal partial assignments which support no solutions.

2 Results

The particular form of formula ¢ which mainly interests us is the class of Layered Boolean
Functions (LBF) which is described in Appendix A. An LBF imposes the following restric-
tions:

1. n=m.
2. The domain space is partitioned into segments, or layers.
3. Functions are similarly partitioned.
4

. If function and input segment sizes are equal, the order of functions in a function
segment uniquely corresponds to the order of variables in the corresponding input
segment.

5. Both input and function segments are themselves ordered for easier bookkeeping.

6. Inputs to a particular function may come from an input segment of order lower or
equal to that of the segment corresponding to the function.

A novelty of the solver is that it consists of a collection of n state machines, each acting
on behalf of one Boolean function, and a brancher whose heuristics are aware of and exploit
this state-based architecture. Since much information is precomputed in the state machines,
inferences can be made more efficiently and sooner resulting in fewer backtracks and higher
backtracks per second. In addition, to help reduce the number of backtracks further, the
solver has the ability to save inferences for future use when they are discovered during
branching. Each such inference is called a lemma. The primary components, namely state
machines, brancher, heuristics, and lemmas, are described elsewhere.

Preliminary results indicate that SBSAT has great potential and that considerable addi-
tional research is needed to fully exploit this potential. Currently implemented features have
been studied in isolation, and in cooperation with each other, and solver performance has
been compared against existing state-of-the-art SAT solvers such as GRASP and SATO3.

Tests have been conducted on semi-random LBFs of equal segment sizes as well as on
one actual input, called EXAMPLE (from a class of problems described in Section B). In
the case of the semi-random LBFs, there are at most k£ + 1 inputs for each Boolean function
f, k of which (the width) either are random in f’s input segment or consecutive (wrapping
around the segment when necessary), and the remaining one, if admissible, takes f’s order
in the previous input segment. LBFs of the latter type are called Sliding and those of the
former type are called Random. The functions for all semi-random LBFs are constructed as
follows. First, randomly choose an input vector of n Boolean values and an output vector of
n Boolean values. Let R be the total number of rows in all truth tables of all functions of ¢.
For R/2 iterations, repeatedly choose randomly one of the unmapped rows of ¢ until finding
one that may be mapped to true without violating input-output consistency, and then set
that row to map to true. When finished, set all unmapped rows to false. Finally, reduce the
number of input mappings consistent with the chosen output vector by applying a procedure
which leaves ¢ with a minimal number of consistent mappings to the given output vector.

Tests use the current SBSAT prototype software. All times are on a 450 MHz single processor
Pentium III PC with 640MB of RAM. Times for SBSAT do not include preprocessing time
(preprocessing times for the inputs given in the tables below are between 15 and 60 seconds).

LBF instance Performance
Type | In Vars | Layers | Width | Solver | Time (sec) | Backtracks
GRASP 746 32000
Sliding 60 4 6 SATO3 510 41800
SBSAT ol 24000
GRASP >1000 -
Random 60 4 6 SATO3 85 11600
SBSAT .03 28

Table 1. Performance of SAT solvers on two LBFs

A variety of instances of LBFs were generated. To be used by existing SAT solvers,
these were transformed to CNF in typical fashion: one clause for every false truth table
row. Quine-McCluskey reductions were also performed but the best performing SAT solvers
did not do any better on the resulting CNF's, generally, so such results are not reported
here. Tables 1 and 2 are representative of what we observed. Generally, SBSAT did better
than CNF solvers. Even if SBSAT needs to backtrack about the same number of times as
another solver it still often does significantly better, probably because of the precomputed
information stored in the state machines. But, it often needs to backtrack far less.

Solver | Time (sec) | Backtracks
GRASP >1000 -
SATO3 22 6220
SBSAT 0.17 171

Table 2. Performance of SAT solvers on EXAMPLE

The results obtained so far are not conclusive. It is possible that some tweaking of SATO
and GRASP would result in significantly better performance. In fact, we note that SBSAT’s
performance on EXAMPLE was due to optimally setting the parameter value of the “locally-
skewed, globally-balanced” (LSGB) heuristic®. In addition, we have not tried the solver on
enough representative inputs. However, we feel the results are sufficient to show the merit
of continued development.

3This heuristic attempts to give high weight to search choices which bring inferences out of each SMURF
sooner and yet approximately balance the search tree

3 Current Research and Development

The results to date demonstrate clearly that much more needs to be learned about optimizing
SBSAT, both in stand-alone and distributed modes. The following points summarize our
current research and development of the solver:

1. Efficient use of lemmas. Lemmas are used to explore the basis of a contradiction
at the bottom of a backtracking tree search. With lemmas we compute the minimal
basis, very quickly and efficiently, for the contradiction that was detected. In highly
structured systems of expressions we find that the bases for these lemmas allow us to
backtrack not to a parent node, but sometimes many nodes higher up the search DAG.

Table 3 illustrates the amazing effectiveness of lemmas in pruning large search spaces.
For the Static heuristic* the number of backtracks is cut by a factor of 80. But the
gain in computational effort is only a factor of 22. In other words, we can maintain a
rate of about 1640 backtracks per second without lemmas but this figure is reduced to
only about 460 when backtracks are applied. Our goal for the backtrack rate without
lemmas, based on the experience of others, is at least 20000 without lemmas and 10000
with lemmas. Clearly, we should be able to improve this situation considerably.

Heuristic | Lemmas | Time (sec) | Backtracks
Static NO 376 617351
Static YES 17 7847

Table 3. Performance of the solver on EXAMPLE with and without lemmas

To meet this goal we are doing several things. Most straightforward is pick through
the prototyped program and carefully replace sections with faster code. For example,
we are reprogramming SBSAT using C instead of C++ and paying careful attention
to the number of function calls, particularly in the brancher, and data structures.

We are redesigning data structures which support lemma storage. Clearly, an essen-
tially linear search, as is conducted in the prototype, is not adequate. Others have
used more clever mechanisms such as a Trie.

We are investigating the effects of node versus edge lemmas. A node lemma is a partial
assignment which cannot lead to anything but a refutation, or no solution, if searching
is continued beneath it. An edge lemma is the same except it applies beneath a literal
on which a branch is taken. Two edge lemmas on opposite branches make a node lemma
(by means of resolution where the branch variable is the pivot). So, the question of
choosing node lemmas or edge lemmas or both to save is related to the question of
which resolvents to save if resolution is applied. The results of Table 4 show this may
not be a straightforward choice.

4A simple heuristic, used for reference, which never changes pre-computed variable weights during the
search process.

We are considering a number of possible algorithms for choosing when, if ever, lemmas
are to be discarded (too many lemmas appear to be too hard to manage). No one yet
has an ideal rule for this and the answer may depend on an analysis of the given input.

Cache | Lemma | Cache Lemmas Time
Type Type Size | Backtracks | Hits | Grazes | (sec)
<none> - - 277675 - - 92
MRH edge 20 62350 13993 | 11561 34
edge 40 28810 5162 | 12762 18
edge 100 16084 2175 14281 13
edge 00 7540 794 | 11381 58
Boa edge 00 9169 910 | 12187 19
node 00 16899 3815 6957 22
both 00 8593 937 | 11039 22

Table 4. Effect of lemma cache size and replacement policy on searching

The results of some simple experiments on the effects of limiting the size of the lemma
cache (newly added lemmas replace some lemma already existing in the cache if it
is full) are shown in Table 4. In these experiments the Static heuristic was used on
EXAMPLE. Under Cache Type, MRH means move the most recently hit lemmas to
the “top” of the cache, and replace old lemmas from the “bottom” of the cache with
newly generated ones. Boa means do not replace or move lemmas, only update literals
appearing in the lemma from both ends® For MRH, Cache Size is the maximum
number of lemmas allowed to be applicable at any one time. The column labeled Hits
holds the number of times a lemma was applied to force a backtrack and the column
Grazes holds the number of times a lemma was one variable away from being applied
and, therefore, used to make a single variable inference.

2. Use of autarkies.

Informally, an autarky of a conjunction of expressions is a partial assignment that can
reduce the problem of determining/finding a satisfying assignment for that conjunction
to the problem of determining/finding a satisfying assignment for the conjunction of
expressions which are not satisfied by the assignment. For example, a pure literal® in a
CNF expression is autark with respect to any partial assignment and it can always be
safely satisfied during search. With autarkies we can detect in highly structured prob-
lems that a piece of the expression space can be lopped off, thus avoiding unnecessary
and costly backtracking. If the smaller system of independent expressions is satisi-
fable then so is the larger system. If the smaller system of independent expressions
is unsatisfiable then so is the larger set of expressions. Autarkies is a very exciting
area a research that we are exploring. However, we are exploring autarkies over state
machines, thus potentially making them more powerful than they are in the traditional
CNF domain.

Boa is short for Boa Constrictor and in this implementation a lemma is a doubly linked list of literals.
6 A literal occurring either positively or negatively but not both in the expression.

3. Efficient and effective heuristics. We have implemented quite a few heuristics

but have only just begun to explore the relationship between heuristics, lemmas, and
inputs. Our results show how tricky heuristic design and use is. For illustration, Table
5 shows how effective, on a relatively highly structured input such as EXAMPLE, the
Static heuristic is, in the absence of lemmas, compared to others such as the LSGB
heuristic with default parameter 4.5. On the other hand, for less structured inputs such
as the Sliding LBF mentioned earlier, the LSGB heuristic (parameter set to default
of 4.5) appears to be quite superior to the others listed. A considerable effort will be
needed to sort out this situation.

. Heuristic parameters. The choice of parameter(s) for a given heuristic is equally
tricky. This is illustrated in Table 5, where the LSGB heuristic is run with parameter
set to 1.3 and 4.5, and Table 6, where the effect of various values of the single parameter
K is given for the LSGB heuristic as applied to EXAMPLE. The LSGB heuristic
selects a literal (that is, a branch) based on a weighting scheme over all active literals.
In Table 6 we show what happens, for each K, when LSGB selected branch (normal
branch denoted N in the Table under column Dir.) is taken and when the opposite
branch (denoted R under column Dir. for reverse) is taken.

Table 6 also shows the results of using lemmas and backjumps on EXAMPLE. A
backjump can occur if the variable branched on does not show up in a refutation below
that branch: in this case, taking the other branch will certainly lead to a refutation so
it is not done. The number of backjumps taken is given in the column labeled Jumps.
The column labeled Both holds the number of remaining backtracks (two branches
each) made. The choice of parameter and its interaction with lemmas clearly needs to
be studied further.

Input Heuristic | Lemmas | Time (sec) | Backtracks
Dynamic NO 1250 244020
Static NO 92 277675
EXAMPLE Future NO 376 617351
LSGB (4.5) | NO 270 369749
LSGB (1.3) | NO 0.17 171
Dynamic NO >86400 -
Static NO 601 2476152
Sliding 60-4-6 LBF Future NO 47 96536
LSGB (4.5) | NO 6 9896
LSGB (1.3) | NO 44 78565

Table 5. The solver applied to two LBF's with various heuristics and no lemmas

. Exposing inferences. An important feature of each state machine is it exposes in-
ferences early and quickly. When a variable is assigned a value, either by inference
or choice, some machines change state. Associated with this change is a precomputed
list of inferences (values to variables) which are implied. Inferences on this list are
instantly broadcast to all objects needing the information since the time needed to

compute the inferences has already been charged to the preprocessing phase. Such in-
ferences can often be broadcast before they would be in a corresponding CNF search,
thereby reducing search effort. For example, consider f; to f5 as follows:

U1 Uz Us|f1 vz U7 U9|f2 Vs s 011|f3
0 0 010 0 0 010 0 0 O 0
0 0 11 0 0 110 0 0 1 0
0 1 01 0 1 01 0 1 0 1
0 1 1 0 0 1 1 1 0 1 1 0
1 0 0|1 1 0 0|1 1 0 0 1
1 0 1 0 1 0 1 0 1 0 1 1
1 1 0 1 1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0 1 1 1 0

Us Vg Un | fa Us Ug Uio | f5

0 O 0 0 0 O 0 (0

0 O 1 1 0 O 1 0

0 1 0 0 0 1 0 1

0 1 1 1 0 1 1 0

1 0 0 0 1 0 010

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 0 1 1 1 1

Setting v; to true causes f; to infer wvg is false which causes f5 to infer vy is true
which causes f5 to infer v is true, all before any choice point is reached. But there
are many other ways to expose inferences faster. For example, consider f; to f; again
as a complete formula: without loss, vy, may be set to true and vg set to false, but
then fy can be inferred satisfied because vy, appears in no unsatisfied function; doing
so allows vg to be set to false and vs, v19, v7 to be set to true followed by f; inferred
satisfied, ending the search before a single choice point is reached! We expect to find
and consider numerous additional, non-conventional ways to expose inferences.

. Analysis of a given input. It is well known that an analysis of the given input, be-
fore applying a solver, can significantly improve the search effort. For example, there
may be a total ordering of functions and of inputs such that, for all or most inputs, the
functions using that input are located in a very narrow portion of the function order-
ing. If such an ordering is found, low searching effort can be guaranteed. As another
example, significant portions of a given input may represent subinstances which are
known for other reasons to be solvable efficiently. Such information can help reduce
search effort significantly, particularly if some decomposition is possible as described
in the next item. Finally, we mention that clustering of clausal inputs into function
groups, possibly attempting to reconstruct relationships existing in a pretransformed
formula, should help significantly with search. Inspection of a number of CNF for-
mulas coming out of practical applications, particularly in formal verification, shows

numerous occurrences of the following pattern, among others:
(11 Vua Vug V... Vo) A (01 VOa) A (01 VU3) Ao A (01 V Ty)

which means v; is equivalent to the disjunction of vs,...,v,. These n 4+ 1 clauses
probably are the result of “flattening” to CNF. Recombining them to a state machine
of n variables is easy to do and probably results in improved performance over the
alternative which is to construct n 4 1 state machines, one for each clause.

Backtracks Lemmas
K | Dir. | Both | Jumps | Hits | Grazes | Time
1.1| N 670 13 40 439 0.69
R 2936 154 174 2681 4.32
1.3| N 142 0 3 21 0.15
R 860 3 16 329 0.93
1.5 N 2785 2 384 5507 5.24
R 457 2 13 283 0.52
2 N | 11861 177 2265 | 26834 | 61.87
R 4336 9 596 7856 10.54
25| N | 13542 127 2837 | 34321 61.11
R 3051 13 352 5853 5.74
3 N | 10358 101 1301 | 19101 | 42.03
R | 17768 790 3698 | 41490 106.9
35| N 7656 104 1069 | 13019 | 26.68
R | 13016 706 2197 | 27002 | 66.07
4 N 7825 290 1222 | 14421 25.54
R 8303 743 1353 | 15336 | 29.34
45| N 6597 261 1171 | 12159 19.4
R 8170 514 1332 | 15578 | 29.27
5 N 5972 301 800 12290 17.76
R | 12428 904 1836 | 23949 | 70.54
6 N | 20108 | 1121 | 3135 | 39386 | 167.19
R | 11393 | 1084 918 20751 65.53
7 N | 19862 | 1090 | 3107 | 40886 | 149.82
R | 10268 912 1017 | 18208 | 50.01
8 N | 17072 794 2590 | 36523 103.4
R 8158 545 877 14739 | 29.81
9 N | 16779 815 2626 | 35787 | 101.37
R 7876 535 859 14247 | 28.98
10 N | 16940 829 2625 | 35987 | 103.08
R 7987 541 828 14333 | 29.12

Table 6. The solver using LSGB Heuristic on EXAMPLE: varying parameter K

We have so far done little to exploit these ideas, yet our direction and previous obser-
vations and results by others suggests we must.

10

7. Decomposition of a given input. One of the most understudied areas of great
potential applicability to SAT solving aims to deal with the question of decomposing
formulas into a few large orthogonal pieces. Then each piece may be solved indepen-
dently and a solution to the given formula may be composed from non-interacting
solutions to each piece. Variations on this idea relax somewhat the requirement of
orthogonality. As an example, consider linear autarkies for CNF formulas. For a par-
ticular CNF formula ¢, define a {0, +1} matrix A, with rows indexed on clauses of
¢, columns indexed on variables of ¢, and such that element A;; is 1/-1/0 if clause 4
contains literal v;/contains literal 7;/does not contain variable v;, respectively. Then
a 1 vector x satisfying Ax > b is a solution to ¢, where b; is 2 minus the number of
literals in clause 7. A vector x of reals satisfying Ax > 0 is called a linear autarky of
A. Linear autarkies generalize considerably the well known concept of pure literal. Let
x be a linear autarky of A and rearrange the order of variables so that x = {x;|x2}
where all entries of x, are 0 and all of x; are non-zero. Round the elements of x; to
either -1 or 1, whichever is closest. Let ¢; be ¢ with all clauses satisfied by the partial
assignment of x; removed. Then a solution to ¢; is a solution to ¢ and if ¢; has no
solution then neither does ¢. In this way, linear autarkies induce decompositions on
CNF inputs. The following is known about linear autarkies for CNF formulas:

(a) They can be found efficiently.
(b) A unique autarky-free subformula can be found efficiently.

(c) A number of polynomial time solvable classes of SAT are subsumed by a class
based on linear autarkies.

Theoretical results in this area are quite recent and no empirical results have been
reported for CNF formulas. Nothing has been done for inputs such as the ones we
work with. Hence, this area needs more study. Linear autarkies are only one of
a number of decomposition methods” which may be applied efficiently and subsume
known significant classes of SAT, but whose potential has not been fully studied. We
propose to determine the effectiveness, empirically, of such ideas.

"See “Effective Logic Computation,” by K. Truemper, Wiley, 1998 for some.

LAYERED BOOLEAN FUNCTIONS 11
A Layered Boolean Functions

Let QSL = {fl,la Ce ey fl,mla fg,l, Ce ey f2,m27 fl_171, cey fl—l,ml—l’ fl71, Ce ey flvml} be a set of Boolean
functions such that f;;, 1 < j < m,;, depends only on the input vector if # = 1 or on the

outputs of functions f,,, where 1 <z < i, and the input vector if i > 1 (we let m; = m, the
number of “visible” outputs: that is the output vector consists of (fi1,..., fim)). Then ¢r
is said to be layered and has [layers. We show here that ¢, [> 2, can be simulated without
loss by a set of functions with [= 2.

Construct a two layer F' from an [-layer ¢ as follows. Create n 4+ m; + ms + ... + my_1
inputs and msy + ms + ... + m;_1 + m outputs. Label all the inputs

p0,17 .- '7p0,n7p1,17 .- '7p1,m17 .. '7plfl,17 .- '7plfl,ml,1

consecutively, from left to right. The first n of these inputs correspond to the actual inde-
pendent inputs of ¢;. The rest correspond to the “internal” interconnect points of ¢. Label
all the outputs

f{,la RS f{,mlv fé,la RS] fé,my RS] fll—l,ml_lv fl,la MRS] fl,m'

corresponding to the outputs of functions f; ;. The truth table for f;, is obtained from the
truth table for f;; as follows. Let zxz...xx be an input pattern mapping f;; to 1. Then,
add the input p;; to the right end (the truth table for fi,,j now has a new column on the
right representing values of p; ;) and have fi’,j map to 1 on input zzx...zxl and map to 0
on input zzx...2zx0. Let yyy...yy be an input pattern mapping f;; to 0. Then, add p; ; to
the right end and have f;; map to 0 on input yyy...yyl and map to 1 on input yyy...yy0.

Now, consider the problem of determining an input pattern which causes a specific output
vector t, for a [-layer ¢;. In the two layer simulation the problem is to determine a pattern for
PoLs - -+ Pimim_, Which causes fi1,..., fi,n to have output ¢, provided that fi,,..., f/_; . |
all have value 1. The solution to the [-layer problem and the two-layer simulation are
identical.

LAYERED BOOLEAN FUNCTIONS 12
B A Class of Examples

This is a description of a class of propositional problems inspired by the following integrated
circuit problem: Does control information exist to map inputs DI to DO through n chunks
of combinational logic?

For example, if DI and DO represent an unsecure/illegal state transition, then the propo-
sitional problem is to verify that the unsecure/illegal state is unreachable or to give a counter
example of how the unsecure/illegal state can be reached from the initial state input.

Dataln Control Information Data Out
C, ,...,Cli Cl,(‘z,...,ck2 Cl,(‘z,...,cKﬂ

%
4 4 4
d.d,...d —) CL; —) CL, =) ... =) CL, j>dl,d2,...,dmo

Thus, as shown in the diagram above, we have m;-bits of data-in and k{-bits of control
information going into some combinational logic C'L;, this output going into combinational
logic C'Ly with ks-bits of control information, ... , output from combinational logic C'L,,_;
into combinational logic C'L,, with k,-bits of control information to produce mep-bits of
data-out.

