
  

A Translationally Inspired Model for 
Autonomous Device Self-Regulation

Greg Wettstein, R.Ph., Ph.D
Principal Engineer, IDfusion LLC



  

Autonomous Self-Regulation
Brought to you by:

Y=mx+b



  

Contrasting the Disciplines

● Software Assurance ● Behavioral Assurance

The development of a 
formal definition of the 
desired behavior of a 
software platform and 
the mathematical proof 
of its correctness 
including the binary 
implementation of the 
software.

The development of a 
formal definition of the 
desired information 
exchange events for a 
computing platform and 
the mathematical 
verification of the 
hardware specific 
implementation of that 
behavior.



  

Our Inspiration - Identity Modeling
Genetic Hash Chaining – Identity Arborescence

Organization Identity

User Identities Device Identities Service Identities

M(class
→

) M(class
→

) M(class
→

)

Dev1 Dev2 DevN

M(sn1
→

)

Process yields device identities which are
linked by a 'measurement path' to an organizational
identity. 

M(sn2
→

) M(snN
→

)



  

Our Initial Motivation - NHIN

“These efforts will coordinate patient care with
The stroke of a key or pull up life saving health
information instantly in an emergency.”

Vice-President Biden and Secretary Sebelius
05/04/2010



  

Where Things Started



  

Our Objective



  

The Approximation



  

Understanding the System



  

Quantum Mechanical Influences on 
Modeled Autonomous Systems

● Semi-empirical approximations.
● Degenerate representations of observable 

states.
● System trajectory paths.



  

Modeling Platform Behavior

Life was easy in quantum mechanics:

Dirac-von Neumann mathematical formulation structures the 'observable'
states of a system to be the result of a self-adjoint hermitian operator
applied to a Hilbert space. 

Commonly implemented as a Linear Combination of Atomic Orbitals
using various implementations of 1-electron Gaussian functions as
the basis set.



  

Definition of an Operating System

Formal:

From a security perspective:

The collection of software that directs a computer's operations,
controlling and scheduling the execution of other programs, and
managing storage, input/output, and communication resources.

A software abstraction layer which is responsible for mediating
information exchange events between a context of execution (Actor)
and a data source or destination (Subject).

B=M(A ∘S
→

)



  

Actor/Subject Identity Composition

Model parameters can be extracted by tooling
from standard software development processes.

Actor and subject identities are functional compressions
of entity specific identity characteristics.

Actor (context of execution – process/thread)

Subject (inodes)

DAC components: uid, gid, euid, eguid, suid, sguid etc.
Capability masks: effective, permitted, inheritable, ambient

Ownership and mode.
Content digest.
Filesystem components:  name, superblock.



  

Actor/Subject Identity Modeling

Premise 1

Premise 2

Premise 3

The interaction of an actor and subject identity yields an 'eigenvector'
in the behavioral field.

The individual extension sums of the behavioral eigenvectors yield the
'eigenstates' of the platform behavioral field.

The behavior of a device is the extension sum of the device identity
projected behavioral eigenstates.

B[eigen]=∑
i=0

A n

∑
j=0

Sm [a ]

M(Hn(A i)∥Hn(S j))
→



  

Behavior Compromise Modeling

● The Hamiltonian path of a single actor identity over its 
subject field yields an 'iso-identity contour'.
– In QM terms the 'Orbit' of the actor through its field.

● Extra-dimensional compromise.
– Platform behavior goes 'off-contour'.

– Detectable by deterministic behavior modeling.

● Intra-dimensional compromise.
– Platform behavior remains 'on-contour'.

– Requires detection by stochastic methods.



  

Path Integral Formulation
With apologies to Richard Feynman

Operational
Measurement
State

System
Boot

State

Actor process 1

Actor process 2

Dr. Wettstein's process.

Platform Behavioral Field



  

Linux Implementation – 4.4 LTS

● Originally based on Linux Integrity Measure Architecture 
(IMA) which treated integrity only as a function of file 
contents for privileged users.
– Sailer, Zhang, Jaeger, Doorn; IBM TJ Watson Research

● Extensions and eventual re-write to implement full 
actor/subject modeling, trajectory modeling and forensics 
capture.

● Significant focus on addressing engineering issues 
surrounding deployment tractability.



  

Modeling Engine Interface
/sys/kernel/security/ima/iso-identity

-r--r-----  1 root root 0 Aug 11 02:31 contours
-r--r-----  1 root root 0 Aug 11 02:31 forensics
--w-------  1 root root 0 Aug 11 02:31 identity
--w-------  1 root root 0 Aug 11 02:31 map
-r--r-----  1 root root 0 Aug 11 02:31 measurement
--w-------  1 root root 0 Aug 11 02:31 pseudonym
--w-------  1 root root 0 Aug 11 02:31 sealed
-r—r------  1 root root 0 Aug 11 02:31 trajectory



  

Semi-Empirical Approximation
Subject Pseudonyms

● Implemented to counter long standing problem with 
integrity systems secondary to writable files.

● Configured by security supervisor during system 
initialization process.

● Synthetic content digest is derived from platform identity.

● Digest is irrevocably lost in case of inode unlink.

● Under active development from a network inode 
perspective.



  

Degeneracy and Iso-Behavioral States

Non-commutative property of extension operator causes
inclusion of time to be a symmetry breaking operation.

M(A1∘S1

→

)+M(A2∘S1

→

) M(A2∘S1

→

)+ M(A1∘S1

→

)≠

Removal of time component in a trajectory path causes the 
remaining behavioral eigenvectors to collapse into a set of 
degenerate eigenstates which are considered to be
iso-behavioral representations of an observed platform state.

Load eigenvalues/contours, seal modeling engine and
monitor system for extra-dimensional behaviors.

Model Simplification:



  

System Trajectory Paths

● The modeling engine provides a trajectory summary for 
the observed behavior field of the platform.

● Tooling generates behavioral eigenstates from system 
trajectory path as a component of the software 
development development process.

● Device identity projection causes each trajectory path to 
be unique.

event{swapper/0:/sbin/init} actor{uid=0, euid=0, suid=0, gid=0, egid=0, sgid=0, 
fsuid=0, fsgid=0, cap=0x3fffffffff} subject{uid=0, gid=0, mode=0100700, 
name_length=10, 
name=cadb8688009d5594acdf21564a7ac45aa93d7ef7d87c303615c3f73f0ab34278, 
s_id=xvda, s_uuid=feadbeaffeadbeaffeadbeaffeadbeaf, 
digest=400ee3609683bac35d2f9d07f1646e44b10aec1d714ab4669c41623caff80541}



  

Behavioral Canisters
'A Container with a Label'

● Similar to containers (OS virtualization) of operating system 
resources.
– Filesystem view (mnt), process identifiers, network resources, inter-

process communications, host/domainname, user identifiers.

– Basis for technologies such as Docker, Rkt, LXC.

● Unsharing the behavior namespace creates a new behavioral 
domain which models the behavior of a process and its 
descendants.

● Critically important for addressing deployment complexity issues.

● Current implementation uses SGX to accumulate canister 
specific behavior measurements.

/sys/fs/iso-identity/update-NNNNNNNN



  

Current and Future Work

● More expressive policy engine.

● Support for process scheduler intervention.

● Network socket support.

● Migration of the modeling engine to an extra-OS implementation.

– VCHAN implementations based on Xen and seL4.

● Increasing the accessible TCB for SGX based applications.

– Gating OCALL's on behavioral state.

– Intel would have a great opportunity for silicon enhancements 
in SGXv2.

There is much work to do before we can announce 
our total failure to make any progress…..



  

 Thank you to the supporting cast.

● John Grosen
● Rick Engen
● Scott Stofferahn
● Christopher Trom
● Jaci Stofferahn
● Izzy the Golden Retriever



  

Thank you for your indulgence.

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

