
A Trustable Autonomous Systems Lifecycle

Howard Reubenstein, BAE Systems Technology Solutions

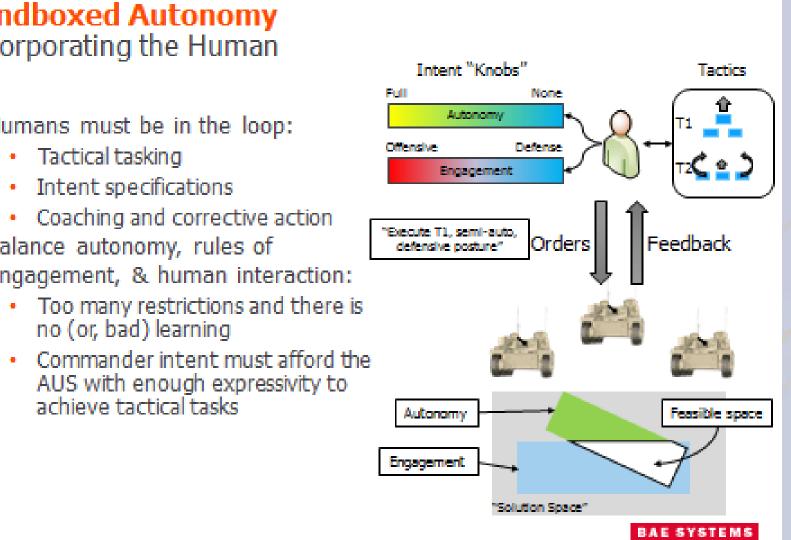
- · Autonomous unmanned systems (AUS) will operate in contested, complex environments.
- · Future fight will be urban, close, and vertical.
- Cross domain force protection, expedition, and situational awareness maneuvers with minimal C2 infrastructure.
- Warfighters require flexible AUS:
 - · Tunable rules of engagement and autonomous decision making.
- · Learn behaviors to increase in-mission adaptability.
- Good AUS performance builds warfighter confidence and reduces cognitive load.
 - · Autonomy reduces required bandwidth and security constraints.
 - · Autonomy provides a force multiplier operators of multiple AUS.

BAE SYSTEMS

Trustable? Obeys Rules of Engagement Implements Commander's Intent

- · Acquisitions lack methods to evaluate and certify AUS programs of record.
- How do you know a learning algorithm "works?"
- Manufacturers need to integrate multiple autonomous system modules. · How do you know collections of learning-based, autonomous modules do not cause unstable interactions?
- · Warfighters have to build trust with AUS in manned-unmanned teaming. · How much should a system adapt and learn, e.g. variable bounds on autonomy and engagement?
 - How should the commander/operator interact to encourage (or, discourage) the learning?

If an autonomous system does not have dynamic behavior guarantees, it will not be purchased, built, or used.


BAE SYSTEMS

Sandboxed Autonomy Notional Architecture Synthesized | Decision Making Knowledge Other AUS Built-In Decision Knowledge Intent Safety Human Commander Perception | Actuator Control Actuation Signals Environment (World and System) Learning must be confined to interior component logic in order to preserve system verification and validation arguments.

BAE SYSTEMS

Sandboxed Autonomy Incorporating the Human

- · Humans must be in the loop:
 - Tactical tasking Intent specifications
- · Coaching and corrective action Balance autonomy, rules of
- engagement, & human interaction:
- no (or, bad) learning · Commander intent must afford the
- AUS with enough expressivity to achieve tactical tasks

Software Intent Specification Provides a Behavioral Envelope for Target System

Black Knight and ARV Autonomous Vehicle Test Bed

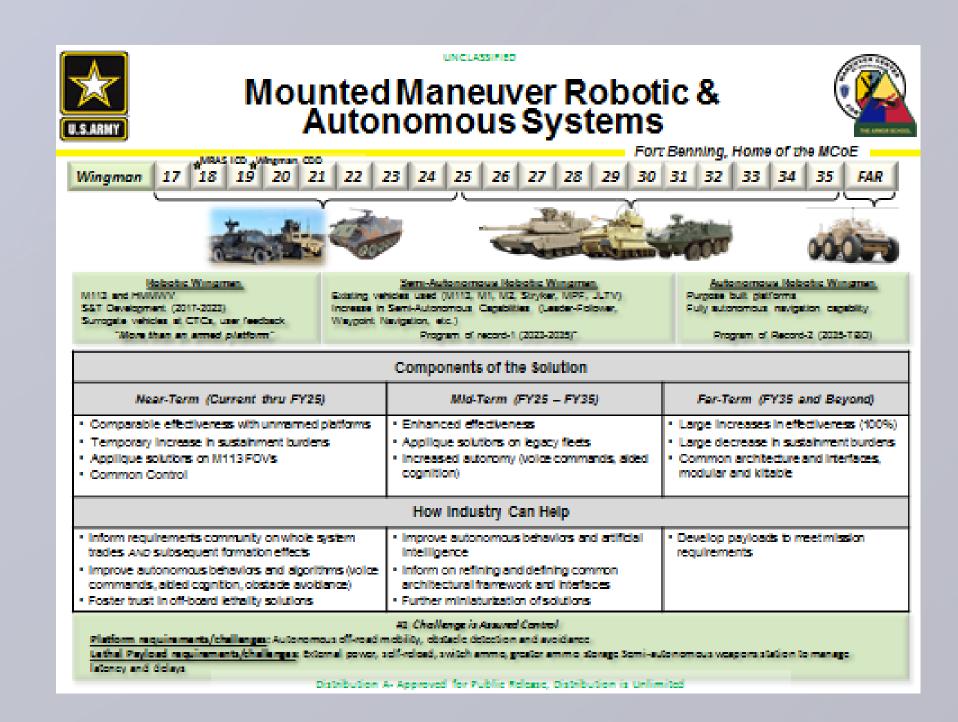
- Refresh perception and navigation modules using sensor advancements.
- Introducing autonomy into the system hierarchy introduces complexity: Vehicle, Tactical and Operational perception and decision making: leveraging
- advances in learning, behavior composition, formal methods. Need an agile lifecycle process: concept — design — build — deploy.

BAE SYSTEMS

Autonomous System V&V Notional Approach

- · Validate base system (no learning has occurred).
- · Verify that learning algorithms can only update interior behavior of welldefined components.
- Learning will not rewrite the overall control logic of the system as a whole. This preserves the structure of the validation argument for the base
- · Learning cannot "rewire" the system to either add or remove I/O channels. · Safety envelope is preserved by runtime behavior verification provided
- by the: Intent Safety Guard. · Intent specification is a broad description of overall required system
- · Underspecifies behavior significantly, admitting a wide range of possible implementations – pre-coded and learned.

BAE SYSTEMS INSPIRED WORK


Intent Safety Guard Vehicle Maneuvers Example

- · Basic intent behaviors include:
 - · Do not exceed 80MPH land speed
 - Do not accelerate towards solid obstructions · Maintain safe following distance to vehicle ahead
- Do not pass on the right More complicated tactical maneuvers:
- Move from point A to point B avoiding exposed environments.
- Encircle red forces while avoiding blue force targeting.

The intent safety guard allows a wide range of behaviors but keeps the AUS in a safety envelope (potentially over-ridable)

BAE SYSTEMS

Army Maneuver Center of Excellence (MCOE) Major Alan Stephens

Annapolis, MD | May 8-10, 2017