
…
A Verified Optimizer for

Quantum Circuits

Kesha Hietala, Robert Rand*, Shih-Han Hung,

Xiaodi Wu and Michael Hicks

*University of Chicago

1

Verified compiler stack

• End goal: verified compiler stack for quantum programs
High-level Language

E.g. Q#, Silq

General Purpose IR
E.g. OpenQASM, Quil

Machine Specific IR
E.g. OpenQASM, Quil… other?

Hardware Instructions

Verified compiler stack

• End goal: verified compiler stack for quantum programs
High-level Language

E.g. Q#, Silq

General Purpose IR
E.g. OpenQASM, Quil

Machine Specific IR
E.g. OpenQASM, Quil… other?

Hardware Instructions

Optimization

Circuit synthesis

Circuit mapping

…

Verified compiler stack

• End goal: verified compiler stack for quantum programs
High-level Language

E.g. Q#, Silq

General Purpose IR
E.g. OpenQASM, Quil

Machine Specific IR
E.g. OpenQASM, Quil… other?

Hardware Instructions

Optimization

Circuit synthesis

Circuit mapping

…

Means that we’ve formally
verified that the transformation
is semantics-preserving.

Small Quantum IR

• Intermediate goal: An IR suitable for representing and
reasoning about quantum programs

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

nU1; U2od = nU2od × nU1od

nG1 qod =
�������
appl�1(G1, q, d) well-typed
02d otherwise

nG2 q1 q2od =
�������
appl�2(G2, q1, q2, d) well-typed
02d otherwise

Figure 3. Semantics of unitary s��� programs, assuming a
global register of dimension d . The appl�k function maps a
gate name to its corresponding unitary matrix and extends
the intended operation to the given dimension by applying
an identity operation on every other qubit in the system. For
example, appl�1(X , q, d) = I2q ⊗ �x ⊗ I2(d−q−1) where �x is
the matrix interpretation of the X gate.

3 s���: A Small Quantum Intermediate
Representation

This section presents the syntax and semantics of s��� pro-
grams. We begin with the core of s���, which describes uni-
tary circuits. We then describe the expanded language, which
allows measurement and initialization.

3.1 Unitary Core
s��� is a language for describing quantum programs that
is deeply embedded in the Coq proof assistant. In s���, a
qubit is referred to by a natural number that indices into a
global register of quantum bits. Unitary s��� programs allow
sequencing and unitary gate application to one or two qubits,
drawing from a �xed set of gates.

U ∶=U1; U2 �G q �G q1 q2

Each s��� program is parameterized by a unitary gate set
(from which G is drawn) and the dimension of the global
register (i.e., the number of available qubits).

A unitary programU iswell-typed if every gate application
is valid. A gate application is valid if all of its arguments are
in-bounds indices into the global register, and no index is
repeated. This second requirement enforces linearity and
thereby quantum mechanics’ no-cloning theorem.
The semantics of unitary s��� programs is shown in Fig-

ure 3. If a program is not well-typed, its denotation is the
zero matrix. The advantage of this de�nition is that it allows
us to reference the denotation of a program without explic-
itly assuming or (re)proving that the program is well-typed,
thus removing clutter from theorems and proofs.

When a program is well-typed, computing its denotation
requires a matrix interpretation for every unitary gate G.
In our development we de�ne the semantics of s��� pro-
grams over the gate set {R� ,� ,�, CNOT} where R� ,� ,� is a
general single-qubit rotation parameterized by three real-
valued rotation angles and CNOT is the standard two-qubit

controlled-not gate. We refer to this gate set as the base set.
It is the same as the underlying set used by OpenQASM [13]
and is universal, meaning that it can approximate any unitary
operation to within arbitrary error. Thematrix interpretation
of the single-qubit R� ,� ,� gate is

� cos(��2) −ei� sin(��2)
ei� sin(��2) ei(�+�) cos(��2)�

and the matrix interpretation of the CNOT gate is given in
Section 2.1.
Common single-qubit gates can be de�ned in terms of

R� ,� ,� . For example, the identity I is R0,0,0; the Hadamard H
gate is R� �2,0,� ; the Pauli X gate is R� ,0,� and the Pauli Z
gate is R0,0,� . We can also de�ne more complex operations
as s��� programs. For example the SWAP operation, which
swaps two qubits, is a sequence of three CNOT gates.

We say that two unitary programs are equivalent, written
U1 ≡ U2, if their denotation is the same, i.e., nU1od = nU2od .
For verifying equivalence of quantumprograms, however, we
will often want something more general since �� � and ei� �� �
(for� ∈ R) represent the same physical state.We therefore say
that two circuits are equivalent up to a global phase, written
U1 ≅U2, when there exists a � such that nU1od = ei� nU2od .

3.2 Adding Measurement
To describe general quantum programs P , we extend unitary
s��� with a branching measurement operation.

U ∶=U1; U2 �G q �G q1 q2

P ∶= skip � P1; P2 �U � meas q P1 P2

let propagate_X q lst = match lst with
| [] → [X q]
| X q :: t → t
| H q :: t → H q ; propagate_Z q t

| Rz q :: t → Rz† q ; propagate_X q t
...

∀P, nT (P)o = nPo
The command meas q P1 P2 (inspired by a similar con-

struct in QPL [43]) measures the qubit q and either performs
program P1 or P2 depending on the result. We de�ne non-
branching measurement and resetting a qubit to �0� in terms
of branching measurement:

measure q = meas q skip skip

reset q = meas q (X q) skip
Figure 4 de�nes the semantics of non-unitary programs

in terms of density matrices, following the approach of sev-
eral previous e�orts [35, 52]. The density matrix semantics
encodes di�erent measurement outcomes as a probability
distribution. We also provide a non-deterministic semantics
in Appendix A.4, which is sometimes more convenient.

4

Verified Compiler Stack

• End goal: verified compiler stack for quantum programs

High-level Language
E.g. Q#, Silq

Unoptimized IR
E.g. OpenQASM, Quil

Optimized IR
E.g. OpenQASM, Quil

Hardware Instructions

Unoptimized SQIR

Optimized SQIR

VOQC

Why is quantum hard?

Why is quantum hard?

• Superposition: Every quantum bit (or qubit) can be in a
combination of 0 and 1 states simultaneously.

Why is quantum hard?

• Superposition: Every quantum bit (or qubit) can be in a
combination of 0 and 1 states simultaneously.

• Entanglement: Qubits can be bound to one another in
such a way that operating on qubit x influence qubit y.

Why is quantum hard?

• Superposition: Every quantum bit (or qubit) can be in a
combination of 0 and 1 states simultaneously.

• Entanglement: Qubits can be bound to one another in
such a way that operating on qubit x influence qubit y.

• Measurement: Inspecting a qubit induces a probabilistic
transition while perturbing the system.

Why is quantum hard?

• Superposition: Every quantum bit (or qubit) can be in a
combination of 0 and 1 states simultaneously.

• Entanglement: Qubits can be bound to one another in
such a way that operating on qubit x influence qubit y.

• Measurement: Inspecting a qubit induces a probabilistic
transition while perturbing the system.

Why is quantum hard?

• Superposition: Every quantum bit (or qubit) can be in a
combination of 0 and 1 states simultaneously.

• Entanglement: Qubits can be bound to one another in
such a way that operating on qubit x influence qubit y.

• Measurement: Inspecting a qubit induces a probabilistic
transition while perturbing the system.

Deferred.

Why is quantum hard?
(operationally)

Why is quantum hard?

• A n-qubit quantum state is represented as a length
vector of complex numbers.

2n

(operationally)

Why is quantum hard?

• A n-qubit quantum state is represented as a length
vector of complex numbers.

2n

• Every operation on the quantum state can alter the entire
vector.

(operationally)

Qubits

Qubits

(1
0)

Qubits

(1
0) (0

1)

Qubits

(1
0) (0

1) 1

2 (1
1)

Qubits

(1
0) (0

1) 1

2 (1
1) 1

2 (1
−1)

Qubits

(1
0) (0

1) 1

2 (1
1) 1

2 (1
−1)

X

Qubits

(1
0) (0

1) 1

2 (1
1) 1

2 (1
−1)

X X

Qubits

(1
0) (0

1) 1

2 (1
1) 1

2 (1
−1)

X X X

Qubits

(1
0) (0

1) 1

2 (1
1) 1

2 (1
−1)

X X X X

Transformations

(1
0) (0

1) 1

2 (1
1) 1

2 (1
−1)

H H H H

Transformations

(1
0) (0

1) 1

2 (1
1) 1

2 (1
−1)

H H H H

Transformations

(1
0) (0

1) 1

2 (1
1) 1

2 (1
−1)

H H H H

Transformations

(1
0) (0

1) 1

2 (1
1) 1

2 (1
−1)

Entanglement

1

2 (1
1)

(1
0)

Entanglement

1

2 (1
1)

(1
0)

Entanglement

1

2 (1
1)

(1
0)

Entanglement

1

2 (1
1)

(1
0)

Entanglement

Bell pair

1

2 (1
1)

(1
0)

Entanglement

Bell pair

1

2 (1
1)

(1
0)

1

2

1
0
0
1

Linear Algebra

Linear Algebra

(1
0) (0

1) 1

2 (1
1) 1

2 (1
−1)

Linear Algebra

(1
0) (0

1) 1

2 (1
1) 1

2 (1
−1)

X (0 1
1 0) H

1

2 (1 1
1 −1)

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Circuits

Circuits

Circuits

∣0⟩

∣0⟩

Circuits

∣0⟩

∣0⟩

Circuits

H∣0⟩

∣0⟩

Circuits

H∣0⟩

∣0⟩

Circuits

H∣0⟩

∣0⟩

Circuits

H∣0⟩

∣0⟩

SQIR

12

• Syntax

• Semantics assumes a global register of size d
• A unitary program corresponds to a unitary matrix of

size

• A non-unitary program corresponds to a function

between density matrices of size

2d × 2d

2d × 2d

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

nU1; U2od = nU2od × nU1od

nG1 qod =
�������
appl�1(G1, q, d) well-typed
02d otherwise

nG2 q1 q2od =
�������
appl�2(G2, q1, q2, d) well-typed
02d otherwise

Figure 3. Semantics of unitary s��� programs, assuming a
global register of dimension d . The appl�k function maps a
gate name to its corresponding unitary matrix and extends
the intended operation to the given dimension by applying
an identity operation on every other qubit in the system. For
example, appl�1(X , q, d) = I2q ⊗ �x ⊗ I2(d−q−1) where �x is
the matrix interpretation of the X gate.

3 s���: A Small Quantum Intermediate
Representation

This section presents the syntax and semantics of s��� pro-
grams. We begin with the core of s���, which describes uni-
tary circuits. We then describe the expanded language, which
allows measurement and initialization.

3.1 Unitary Core
s��� is a language for describing quantum programs that
is deeply embedded in the Coq proof assistant. In s���, a
qubit is referred to by a natural number that indices into a
global register of quantum bits. Unitary s��� programs allow
sequencing and unitary gate application to one or two qubits,
drawing from a �xed set of gates.

U ∶=U1; U2 �G q �G q1 q2

Each s��� program is parameterized by a unitary gate set
(from which G is drawn) and the dimension of the global
register (i.e., the number of available qubits).

A unitary programU iswell-typed if every gate application
is valid. A gate application is valid if all of its arguments are
in-bounds indices into the global register, and no index is
repeated. This second requirement enforces linearity and
thereby quantum mechanics’ no-cloning theorem.
The semantics of unitary s��� programs is shown in Fig-

ure 3. If a program is not well-typed, its denotation is the
zero matrix. The advantage of this de�nition is that it allows
us to reference the denotation of a program without explic-
itly assuming or (re)proving that the program is well-typed,
thus removing clutter from theorems and proofs.

When a program is well-typed, computing its denotation
requires a matrix interpretation for every unitary gate G.
In our development we de�ne the semantics of s��� pro-
grams over the gate set {R� ,� ,�, CNOT} where R� ,� ,� is a
general single-qubit rotation parameterized by three real-
valued rotation angles and CNOT is the standard two-qubit

controlled-not gate. We refer to this gate set as the base set.
It is the same as the underlying set used by OpenQASM [13]
and is universal, meaning that it can approximate any unitary
operation to within arbitrary error. Thematrix interpretation
of the single-qubit R� ,� ,� gate is

� cos(��2) −ei� sin(��2)
ei� sin(��2) ei(�+�) cos(��2)�

and the matrix interpretation of the CNOT gate is given in
Section 2.1.
Common single-qubit gates can be de�ned in terms of

R� ,� ,� . For example, the identity I is R0,0,0; the Hadamard H
gate is R� �2,0,� ; the Pauli X gate is R� ,0,� and the Pauli Z
gate is R0,0,� . We can also de�ne more complex operations
as s��� programs. For example the SWAP operation, which
swaps two qubits, is a sequence of three CNOT gates.

We say that two unitary programs are equivalent, written
U1 ≡ U2, if their denotation is the same, i.e., nU1od = nU2od .
For verifying equivalence of quantumprograms, however, we
will often want something more general since �� � and ei� �� �
(for� ∈ R) represent the same physical state.We therefore say
that two circuits are equivalent up to a global phase, written
U1 ≅U2, when there exists a � such that nU1od = ei� nU2od .

3.2 Adding Measurement
To describe general quantum programs P , we extend unitary
s��� with a branching measurement operation.

U ∶=U1; U2 �G q �G q1 q2

P ∶= skip � P1; P2 �U � meas q P1 P2

let propagate_X q lst = match lst with
| [] → [X q]
| X q :: t → t
| H q :: t → H q ; propagate_Z q t

| Rz q :: t → Rz† q ; propagate_X q t
...

∀P, nT (P)o = nPo
The command meas q P1 P2 (inspired by a similar con-

struct in QPL [43]) measures the qubit q and either performs
program P1 or P2 depending on the result. We de�ne non-
branching measurement and resetting a qubit to �0� in terms
of branching measurement:

measure q = meas q skip skip

reset q = meas q (X q) skip
Figure 4 de�nes the semantics of non-unitary programs

in terms of density matrices, following the approach of sev-
eral previous e�orts [35, 52]. The density matrix semantics
encodes di�erent measurement outcomes as a probability
distribution. We also provide a non-deterministic semantics
in Appendix A.4, which is sometimes more convenient.

4

SQIR

12

• Syntax

• Semantics assumes a global register of size d
• A unitary program corresponds to a unitary matrix of

size

• A non-unitary program corresponds to a function

between density matrices of size

2d × 2d

2d × 2d

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

nU1; U2od = nU2od × nU1od

nG1 qod =
�������
appl�1(G1, q, d) well-typed
02d otherwise

nG2 q1 q2od =
�������
appl�2(G2, q1, q2, d) well-typed
02d otherwise

Figure 3. Semantics of unitary s��� programs, assuming a
global register of dimension d . The appl�k function maps a
gate name to its corresponding unitary matrix and extends
the intended operation to the given dimension by applying
an identity operation on every other qubit in the system. For
example, appl�1(X , q, d) = I2q ⊗ �x ⊗ I2(d−q−1) where �x is
the matrix interpretation of the X gate.

3 s���: A Small Quantum Intermediate
Representation

This section presents the syntax and semantics of s��� pro-
grams. We begin with the core of s���, which describes uni-
tary circuits. We then describe the expanded language, which
allows measurement and initialization.

3.1 Unitary Core
s��� is a language for describing quantum programs that
is deeply embedded in the Coq proof assistant. In s���, a
qubit is referred to by a natural number that indices into a
global register of quantum bits. Unitary s��� programs allow
sequencing and unitary gate application to one or two qubits,
drawing from a �xed set of gates.

U ∶=U1; U2 �G q �G q1 q2

Each s��� program is parameterized by a unitary gate set
(from which G is drawn) and the dimension of the global
register (i.e., the number of available qubits).

A unitary programU iswell-typed if every gate application
is valid. A gate application is valid if all of its arguments are
in-bounds indices into the global register, and no index is
repeated. This second requirement enforces linearity and
thereby quantum mechanics’ no-cloning theorem.
The semantics of unitary s��� programs is shown in Fig-

ure 3. If a program is not well-typed, its denotation is the
zero matrix. The advantage of this de�nition is that it allows
us to reference the denotation of a program without explic-
itly assuming or (re)proving that the program is well-typed,
thus removing clutter from theorems and proofs.

When a program is well-typed, computing its denotation
requires a matrix interpretation for every unitary gate G.
In our development we de�ne the semantics of s��� pro-
grams over the gate set {R� ,� ,�, CNOT} where R� ,� ,� is a
general single-qubit rotation parameterized by three real-
valued rotation angles and CNOT is the standard two-qubit

controlled-not gate. We refer to this gate set as the base set.
It is the same as the underlying set used by OpenQASM [13]
and is universal, meaning that it can approximate any unitary
operation to within arbitrary error. Thematrix interpretation
of the single-qubit R� ,� ,� gate is

� cos(��2) −ei� sin(��2)
ei� sin(��2) ei(�+�) cos(��2)�

and the matrix interpretation of the CNOT gate is given in
Section 2.1.
Common single-qubit gates can be de�ned in terms of

R� ,� ,� . For example, the identity I is R0,0,0; the Hadamard H
gate is R� �2,0,� ; the Pauli X gate is R� ,0,� and the Pauli Z
gate is R0,0,� . We can also de�ne more complex operations
as s��� programs. For example the SWAP operation, which
swaps two qubits, is a sequence of three CNOT gates.

We say that two unitary programs are equivalent, written
U1 ≡ U2, if their denotation is the same, i.e., nU1od = nU2od .
For verifying equivalence of quantumprograms, however, we
will often want something more general since �� � and ei� �� �
(for� ∈ R) represent the same physical state.We therefore say
that two circuits are equivalent up to a global phase, written
U1 ≅U2, when there exists a � such that nU1od = ei� nU2od .

3.2 Adding Measurement
To describe general quantum programs P , we extend unitary
s��� with a branching measurement operation.

U ∶=U1; U2 �G q �G q1 q2

P ∶= skip � P1; P2 �U � meas q P1 P2

let propagate_X q lst = match lst with
| [] → [X q]
| X q :: t → t
| H q :: t → H q ; propagate_Z q t

| Rz q :: t → Rz† q ; propagate_X q t
...

∀P, nT (P)o = nPo
The command meas q P1 P2 (inspired by a similar con-

struct in QPL [43]) measures the qubit q and either performs
program P1 or P2 depending on the result. We de�ne non-
branching measurement and resetting a qubit to �0� in terms
of branching measurement:

measure q = meas q skip skip

reset q = meas q (X q) skip
Figure 4 de�nes the semantics of non-unitary programs

in terms of density matrices, following the approach of sev-
eral previous e�orts [35, 52]. The density matrix semantics
encodes di�erent measurement outcomes as a probability
distribution. We also provide a non-deterministic semantics
in Appendix A.4, which is sometimes more convenient.

4

Semantics

13

Unitary program unitary matrix→

[[X]] = (0 1
1 0)

[[U1; U2]]d = [[U2]]d × [[U1]]d

[[G1 q]]d = {apply1(G1, q, d) well-typed
02d otherwise

[[H]] =
1

2 (1 1
1 −1)

[[G1 q1 q2]]d = {apply2(G1, q1, q2, d) well-typed
02d otherwise

[[H 1]]4 = {I2 ⊗ H ⊗ I4 well-typed
024 otherwise

Semantics

13

Unitary program unitary matrix→

[[X]] = (0 1
1 0)

[[U1; U2]]d = [[U2]]d × [[U1]]d

[[H]] =
1

2 (1 1
1 −1)

[[G1 q1 q2]]d = {apply2(G1, q1, q2, d) well-typed
02d otherwise

X/Z-Propagation

HX H X

X/Z-Propagation

HX H X

Lemma X_H_slide: X q; H q ≡ H q; Z q.

X/Z-Propagation

H H XZ

Lemma X_H_slide: X q; H q ≡ H q; Z q.

X/Z-Propagation

H H XZ

Lemma X_H_slide: X q; H q ≡ H q; Z q.

Lemma Z_CNOT_slide:
 Z q; CNOT q q' ≡ CNOT q q'; Z q

X/Z-Propagation

H H XZ

Lemma X_H_slide: X q; H q ≡ H q; Z q.

Lemma Z_CNOT_slide:
 Z q; CNOT q q' ≡ CNOT q q'; Z q

X/Z-Propagation

H H XZ

Lemma X_H_slide: X q; H q ≡ H q; Z q.

Lemma Z_CNOT_slide:
 Z q; CNOT q q' ≡ CNOT q q'; Z q

Lemma Z_H_slide: Z q; H q ≡ X q; Z q.

X/Z-Propagation

H H XX

Lemma X_H_slide: X q; H q ≡ H q; Z q.

Lemma Z_CNOT_slide:
 Z q; CNOT q q' ≡ CNOT q q'; Z q

Lemma Z_H_slide: Z q; H q ≡ X q; Z q.

X/Z-Propagation

H H XX

Lemma X_H_slide: X q; H q ≡ H q; Z q.

Lemma Z_CNOT_slide:
 Z q; CNOT q q' ≡ CNOT q q'; Z q

Lemma X_X_id: X q; X q ≡ I q

Lemma Z_H_slide: Z q; H q ≡ X q; Z q.

X/Z-Propagation

H H

Lemma X_H_slide: X q; H q ≡ H q; Z q.

Lemma Z_CNOT_slide:
 Z q; CNOT q q' ≡ CNOT q q'; Z q

Lemma X_X_id: X q; X q ≡ I q

Lemma Z_H_slide: Z q; H q ≡ X q; Z q.

X/Z-Propagation

H H

Theorem propagateZX_sound :
propagate_ZX P ≡ P.

Lemma X_H_slide: X q; H q ≡ H q; Z q.

Lemma Z_CNOT_slide:
 Z q; CNOT q q' ≡ CNOT q q'; Z q

Lemma X_X_id: X q; X q ≡ I q

Lemma Z_H_slide: Z q; H q ≡ X q; Z q.

Verifying Matrix Equivalences

• Proving matrix equivalences in Coq is tedious

• E.g.

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

Verifying Matrix Equivalences

• Proving matrix equivalences in Coq is tedious

• E.g.

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

Verifying Matrix Equivalences

• Proving matrix equivalences in Coq is tedious

• E.g.

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

Verifying Matrix Equivalences

• Proving matrix equivalences in Coq is tedious

• E.g.

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

normalize

Verifying Matrix Equivalences

• Proving matrix equivalences in Coq is tedious

• E.g.

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

normalize no
rm
al
iz
e

Verifying Matrix Equivalences

• Proving matrix equivalences in Coq is tedious

• E.g.

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

normalize no
rm
al
iz
e

Rotation Merging

H

H

H

Rz

Rz

Rz

H

Rz H

H

[Nam, Ross, Su, Childs, Maslov, 2018]

Rotation Merging

H

H

H

Rz

Rz

Rz

H

Rz H

H

[Nam, Ross, Su, Childs, Maslov, 2018]

Rotation Merging

H

H

H

RzRzRz

H

Rz H

H

[Nam, Ross, Su, Childs, Maslov, 2018]

Rotation Merging

H

H

H

Rz

Rz

Rz

H

Rz H

H

[Nam, Ross, Su, Childs, Maslov, 2018]

Rotation Merging

Rz

Rz

Rz

Rz

[Nam, Ross, Su, Childs, Maslov, 2018]

Rotation Merging

Rz

Rz

Rz

Rz

[Nam, Ross, Su, Childs, Maslov, 2018]

|ψ⟩
Basis State

Rotation Merging

Rz

Rz

Rz

Rz

[Nam, Ross, Su, Childs, Maslov, 2018]

|ψ⟩
Basis State

|ψ′ ⟩
Basis State

Rotation Merging

RzRzRzRz

[Nam, Ross, Su, Childs, Maslov, 2018]

|ψ⟩
Basis State

|ψ′ ⟩
Basis State

Rotation Merging

RzRzRzRz

[Nam, Ross, Su, Childs, Maslov, 2018]

|ψ⟩
Basis State

|ψ′ ⟩
Basis State

Performance
• Our verified optimizer vs. existing unverified optimizers

Avg. reduction in gate count

Qiskit tket Nam VOQC

10.4% 10.9% 26.4% 18.7%

Avg. reduction in T gates

Amy PyZX Nam VOQC

40.9% 43.8% 42.3% 42.3%

1 https://qiskit.org/

2 https://cqcl.github.io/pytket/build/html/index.html

3 https://arxiv.org/pdf/1710.07345.pdf

4 https://arxiv.org/pdf/1303.2042.pdf

5 https://github.com/Quantomatic/pyzx

Geometric mean runtime

Qiskit1 tket2 Nam3
(L)

Nam
(H) Amy4 PyZX5 VOQC

2.128s 0.226s 0.002s 0.018s 0.007s 0.204s 0.012s

https://qiskit.org/
https://cqcl.github.io/pytket/build/html/index.html
https://arxiv.org/pdf/1710.07345.pdf
https://arxiv.org/pdf/1303.2042.pdf
https://github.com/Quantomatic/pyzx
https://qiskit.org/
https://cqcl.github.io/pytket/build/html/index.html
https://arxiv.org/pdf/1710.07345.pdf
https://arxiv.org/pdf/1303.2042.pdf
https://github.com/Quantomatic/pyzx

Non-unitary Optimizations

Non-unitary Optimizations

Lemma Z_meas:
 Z q ; meas q then c1 else c2 ≡
 meas q then c1 else c2

Non-unitary Optimizations

Lemma Z_meas:
 Z q ; meas q then c1 else c2 ≡
 meas q then c1 else c2

Lemma X_meas:
 X q ; meas q then c1 else c2 ≡
 meas q then X q; c2 else X q; c1

Non-unitary Optimizations

Lemma Z_meas:
 Z q ; meas q then c1 else c2 ≡
 meas q then c1 else c2

Lemma X_meas:
 X q ; meas q then c1 else c2 ≡
 meas q then X q; c2 else X q; c1

Lemma meas_CNOT:
 meas q then c1 else CNOT q q’; c2 ≡
 meas q then c1 else c2

• Given an input program & description of machine
connectivity, mapping produces a program that meets
connectivity constraints

‣ E.g. CNOT 0 2 SWAP 0 1; CNOT 1 2

• We prove that the output program is equivalent to the
original, up to permutation of indices

‣ Above, where P
implements the permutation

→

{0 → 1, 1 → 0, 2 → 2}

Circuit Mapping

20

0 1 2

•Many quantum programs rely on classical oracles,
classical functions evaluated on quantum data

•We have verified the compilation of Boolean formulas
into quantum circuits with X, CNOT, and Toffoli gates

(b0 ∧ b1) ⊕ b2

|b0⟩
|b1⟩
|b2⟩
|0⟩
|0⟩
|0⟩

|b0⟩
|b1⟩
|b2⟩
| (b0 ∧ b1) ⊕ b2 ⟩
|0⟩
|0⟩

Boolean Oracle Compilation

General Verification
• Scale invariant correctness proofs of variety of quantum

algorithms:

• GHZ state preparation

• Deutsch-Jozsa algorithm

• Simon’s algorithm

• Quantum phase estimation

• Full proof of correctness for Shor’s algorithm

• Adding Python bindings to improve VOQC usability

• Extending oracle compilation to include arithmetic
functions

• Implementing additional optimizations (e.g. those used
in Qiskit)

23

In Progress

• Verify approximate algorithms and optimizations

• Compile from high-level languages (Silq, Q#) to SQIR

• Compile from SQIR to low-level pulses

• Verify other parts of the software stack (e.g. resource
estimation)

Future Directions

• Verify approximate algorithms and optimizations

• Compile from high-level languages (Silq, Q#) to SQIR

• Compile from SQIR to low-level pulses

• Verify other parts of the software stack (e.g. resource
estimation)

Future Directions

Paper: http://people.cs.uchicago.edu/~rand/voqc_draft.pdf

http://people.cs.uchicago.edu/~rand/voqc_draft.pdf
http://people.cs.uchicago.edu/~rand/voqc_draft.pdf

• Verify approximate algorithms and optimizations

• Compile from high-level languages (Silq, Q#) to SQIR

• Compile from SQIR to low-level pulses

• Verify other parts of the software stack (e.g. resource
estimation)

Future Directions

Paper: http://people.cs.uchicago.edu/~rand/voqc_draft.pdf
Code: https://github.com/inQWIRE/SQIR

http://people.cs.uchicago.edu/~rand/voqc_draft.pdf
http://people.cs.uchicago.edu/~rand/voqc_draft.pdf
https://github.com/inQWIRE/SQIR
https://github.com/inQWIRE/SQIR

