20th ANNUAL HIGH CONFIDENCE SOFTWARE AND SYSTEMS CONFERENCE

A Verified Optimizer for Quantum Circuits

Kesha Hietala, **Robert Rand***, Shih-Han Hung, Xiaodi Wu and Michael Hicks

*University of Chicago

Verified compiler stack

• End goal: *verified compiler stack* for quantum programs

Verified compiler stack

• End goal: *verified compiler stack* for quantum programs

Verified compiler stack

End goal: verified compiler stack for quantum programs

Small Quantum IR

Intermediate goal: An IR suitable for representing and reasoning about quantum programs

$$U := U_1; U_2 | G q | G q_1 q_2$$
$$P := \text{skip} | P_1; P_2 | U | \text{meas } q P_1 P_2$$

Verified Compiler Stack

• End goal: *verified compiler stack* for quantum programs

• Superposition: Every quantum bit (or *qubit*) can be in a combination of 0 and 1 states simultaneously.

- Superposition: Every quantum bit (or *qubit*) can be in a combination of 0 and 1 states simultaneously.
- *Entanglement*: Qubits can be bound to one another in such a way that operating on qubit **x** influence qubit **y**.

- Superposition: Every quantum bit (or qubit) can be in a combination of 0 and 1 states simultaneously.
- *Entanglement*: Qubits can be bound to one another in such a way that operating on qubit **x** influence qubit **y**.
- Measurement: Inspecting a qubit induces a probabilistic transition while perturbing the system.

- Superposition: Every quantum bit (or qubit) can be in a combination of 0 and 1 states simultaneously.
- *Entanglement*: Qubits can be bound to one another in such a way that operating on qubit **x** influence qubit **y**.
- Measurement: Inspecting a qubit induces a probabilistic transition while perturbing the system.

- Superposition: Every quantum bit (or qubit) can be in a combination of 0 and 1 states simultaneously.
- *Entanglement*: Qubits can be bound to one another in such a way that operating on qubit **x** influence qubit **y**.
- Measurement: Inspecting a qubit induces a probabilistic transition while perturbing the system.

Deferred.

Why is quantum hard? (operationally)

Why is quantum hard? (operationally)

A n-qubit quantum state is represented as a length 2ⁿ vector of complex numbers.

Why is quantum hard? (operationally)

- A n-qubit quantum state is represented as a length 2^n vector of complex numbers.
- Every operation on the quantum state can alter the entire vector.

Qubits

Qubits

Qubits $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Bell pair

Bell pair

Linear Algebra

Linear Algebra

Linear Algebra

 $|0\rangle$

SQIR

• Syntax

 $U := U_1; U_2 | G q | G q_1 q_2$ $P := \text{skip} | P_1; P_2 | U | \text{meas } q P_1 P_2$

- Semantics assumes a **global register** of size *d*
 - A unitary program corresponds to a unitary matrix of size $2^d \times 2^d$
 - A non-unitary program corresponds to a function between density matrices of size $2^d \times 2^d$

SQIR

• Syntax

$$U := U_1; U_2 | G q | G q_1 q_2$$
$$P := \text{skip} | P_1; P_2 | U | \text{meas } q P_1 P_2$$

- Semantics assumes a **global register** of size *d*
 - A unitary program corresponds to a unitary matrix of size $2^d \times 2^d$
 - A non-unitary program corresponds to a function between density matrices of size $2^d \times 2^d$

Semantics

Unitary program \rightarrow unitary matrix

$$\llbracket X \rrbracket = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \llbracket H \rrbracket = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
$$\llbracket U_1; \ U_2 \rrbracket_d = \llbracket U_2 \rrbracket_d \times \llbracket U_1 \rrbracket_d$$
$$\llbracket G_1 \ q \rrbracket_d = \begin{cases} apply_1(G_1, q, d) & \text{well-typed} \\ 0_{2^d} & \text{otherwise} \end{cases}$$
$$\llbracket G_1 \ q_1 \ q_2 \rrbracket_d = \begin{cases} apply_2(G_1, q_1, q_2, d) & \text{well-typed} \\ 0_{2^d} & \text{otherwise} \end{cases}$$

Semantics

Unitary program \rightarrow unitary matrix

$$\llbracket X \rrbracket = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \llbracket H \rrbracket = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
$$\llbracket U_1; \ U_2 \rrbracket_d = \ \llbracket U_2 \rrbracket_d \times \llbracket U_1 \rrbracket_d$$
$$\llbracket H \ 1 \rrbracket_4 = \begin{cases} I_2 \otimes H \otimes I_4 & \text{well-typed} \\ 0_{2^4} & \text{otherwise} \end{cases}$$
$$\llbracket G_1 \ q_1 \ q_2 \rrbracket_d = \begin{cases} apply_2(G_1, \ q_1, \ q_2, \ d) & \text{well-typed} \\ 0_{2^d} & \text{otherwise} \end{cases}$$

X/Z-Propagation

Lemma X_H_slide: X q; H q \equiv H q; Z q.

Lemma X_H_slide: X q; H q \equiv H q; Z q.

Lemma X_H_slide: X q; H q \equiv H q; Z q.

Lemma Z_CNOT_slide: Z q; CNOT q q' ≡ CNOT q q'; Z q

- Proving matrix equivalences in Coq is tedious
- E.g. X n; $CNOT m n \equiv CNOT m n$; X n

 $apply_1(X, n, d) \times apply_2(CNOT, m, n, d) = apply_2(CNOT, m, n, d) \times apply_1(X, n, d)$

- Proving matrix equivalences in Coq is tedious
- E.g. X n; $CNOT m n \equiv CNOT m n$; X n $apply_1(X, n, d) \times apply_2(CNOT, m, n, d) = apply_2(CNOT, m, n, d) \times apply_1(X, n, d)$

 $apply_{1}(X, n, d) = I_{2^{n}} \otimes \sigma_{x} \otimes I_{2^{q}}$ $apply_{2}(CNOT, m, n, d) = I_{2^{m}} \otimes |1\rangle\langle 1| \otimes I_{2^{p}} \otimes \sigma_{x} \otimes I_{2^{q}} + I_{2^{m}} \otimes |0\rangle\langle 0| \otimes I_{2^{p}} \otimes I_{2} \otimes I_{2^{q}}$

- Proving matrix equivalences in Coq is tedious
- E.g. X n; $CNOT m n \equiv CNOT m n$; X n

 $apply_1(X, n, d) \times apply_2(CNOT, m, n, d) = apply_2(CNOT, m, n, d) \times apply_1(X, n, d)$

- Proving matrix equivalences in Coq is tedious
- E.g. X n; $CNOT m n \equiv CNOT m n$; X n

normalize

 $apply_1(X, n, d) \times apply_2(CNOT, m, n, d) = apply_2(CNOT, m, n, d) \times apply_1(X, n, d)$

Proving matrix equivalences in Coq is tedious

• E.g. X n; $CNOT m n \equiv CNOT m n$; X n $apply_1(X, n, d) \times apply_2(CNOT, m, n, d) = apply_2(CNOT, m, n, d) \times apply_1(X, n, d)$.

Proving matrix equivalences in Coq is tedious

• E.g. X n; $CNOT m n \equiv CNOT m n$; X n $apply_1(X, n, d) \times apply_2(CNOT, m, n, d) = apply_2(CNOT, m, n, d) \times apply_1(X, n, d)$ normalize normal ize

 $I_{2^m} \otimes |1\rangle \langle 1| \otimes I_{2^p} \otimes I_2 \otimes I_{2^q} + I_{2^m} \otimes |0\rangle \langle 0| \otimes I_{2^p} \otimes \sigma_x \otimes I_{2^q}$

[Nam, Ross, Su, Childs, Maslov, 2018]

[Nam, Ross, Su, Childs, Maslov, 2018]

[Nam, Ross, Su, Childs, Maslov, 2018]

[Nam, Ross, Su, Childs, Maslov, 2018]

Performance

• Our verified optimizer vs. existing unverified optimizers

Geometric mean runtime								
Qiskit ¹	tket ²	Nam ³ (L)	Nam (H)	Amy ⁴	PyZX ⁵	VOQC		
2.128s	0.226s	0.002s	0.018s	0.007s	0.204s	0.012s		

Avg. reduction in gate count							
Qiskit	tket	Nam	VOQC				
10.4%	10.9%	26.4%	18.7%				

Avg. reduction in T gates						
Amy	ΡγΖΧ	Nam	VOQC			
40.9%	43.8%	42.3%	42.3%			

- <u>https://qiskit.org/</u>
 <u>https://cqcl.github.io/pytket/build/html/index.html</u>
 <u>https://arxiv.org/pdf/1710.07345.pdf</u>
 <u>https://arxiv.org/pdf/1303.2042.pdf</u>
 <u>https://github.com/Quantomatic/pyzx</u>

Lemma Z_meas: Z q ; meas q then c1 else c2 ≡ meas q then c1 else c2

Circuit Mapping

- Given an input program & description of machine connectivity, mapping produces a program that meets connectivity constraints
 - ► E.g. CNOT 0 2 0 \leftarrow 1 \leftarrow 2 \rightarrow SWAP 0 1; CNOT 1 2
- We prove that the output program is equivalent to the original, up to permutation of indices
 - Above, $[[CNOT 0 2]]_3 = P \times [[SWAP 0 1; CNOT 1 2]]_3$ where P implements the permutation $\{0 \rightarrow 1, 1 \rightarrow 0, 2 \rightarrow 2\}$

Boolean Oracle Compilation

- Many quantum programs rely on *classical oracles*, classical functions evaluated on quantum data
- We have verified the compilation of Boolean formulas into quantum circuits with X, CNOT, and Toffoli gates

General Verification

- Scale invariant correctness proofs of variety of quantum algorithms:
 - GHZ state preparation
 - Deutsch-Jozsa algorithm
 - Simon's algorithm
 - Quantum phase estimation

In Progress

- Full proof of correctness for Shor's algorithm
- Adding Python bindings to improve VOQC usability
- Extending oracle compilation to include arithmetic functions
- Implementing additional optimizations (e.g. those used in Qiskit)

Future Directions

- Verify approximate algorithms and optimizations
- Compile from high-level languages (Silq, Q#) to SQIR
- Compile from SQIR to low-level pulses
- Verify other parts of the software stack (e.g. resource estimation)

Future Directions

- Verify approximate algorithms and optimizations
- Compile from high-level languages (Silq, Q#) to SQIR
- Compile from SQIR to low-level pulses
- Verify other parts of the software stack (e.g. resource estimation)

Paper: http://people.cs.uchicago.edu/~rand/voqc_draft.pdf

Future Directions

- Verify approximate algorithms and optimizations
- Compile from high-level languages (Silq, Q#) to SQIR
- Compile from SQIR to low-level pulses
- Verify other parts of the software stack (e.g. resource estimation)

Paper: http://people.cs.uchicago.edu/~rand/voqc_draft.pdf Code: https://github.com/inQWIRE/SQIR