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many tools and techniques have been developed by the programming

languages, formal verification, and model checking communities 
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end-user
- engages in formal reasoning tasks

– a single environment can…
• allow users to leverage multiple tools and techniques 

using a uniform, familiar interface and representation

• make setup easy, or (if web-based) unnecessary

– these benefits may lead to more widespread 
utilization of existing tools and techniques
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– focus is not on rigorous formal safety or correctness 
of integration of components

• most formal models of domains are incomplete

• however, two approaches are complementary

– value of integration: an automated interactive
environment with multiple kinds of instant feedback
identifying problems for users

end-user
- engages in formal reasoning tasks
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– no setup; no special environment needed

– familiar or conventional domain-specific syntax

– interactive, immediate feedback (guidance, results, 
validity)

– at least some feedback for partial arguments

– flexibility with regard to level of detail

end-user
- engages in formal reasoning tasks
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in this work we are developing:

– a proposed collection of conventions and practical tools
for building, instantiating, and delivering to end-users 
accessible and integrated formal reasoning environments

– a context for posing questions about the integration of 
automated formal algorithms and tools with one another and 
with other supporting components
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end-user
- engages in formal reasoning tasks

administrator/domain expert
- instantiates domain-specific libraries
- authors/ curates library contents
- manages environment/embeddings

formal systems expert
- implements integrated algorithms
- implements translations to other
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we assume that there exist three user roles (possibly 

overlapping) that an infrastructure for accessible 

integrated environments must accommodate
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course instructor
- authors lecture notes w/ examples
- assembles assignments
- specifies available propositions

formal systems expert
- implements integrated algorithms
- implements translations to other
systems

these roles may correspond to more specific user 

types in particular application domains, such as 

classroom instruction

enrolled student
- uses environment to complete assignments
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- authors lecture notes w/ examples
- assembles assignments
- specifies available propositions

formal systems expert
- implements integrated algorithms
- implements translations to other
systems

we briefly describe how an end-user might experience 

such an environment by looking at a prototype used in 

an undergraduate mathematics course

enrolled student
- uses environment to complete assignments
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online course notes contain verifiable arguments that can be viewed by students 

either in a friendly format or as verifiable formal syntax 
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verifiable formal arguments included in the course notes can be loaded instantly 

into the integrated environment 



12

students can view and explore the propositions made available for an 

assignment by the instructor
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actual examples of verifiable formal arguments assembled by students 
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actual examples of verifiable formal arguments assembled by students 
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the supporting tools for a course instructor are 

currently a work in progress

enrolled student
- uses environment to complete assignments
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• in earlier work, interfaces were built for collaboratively assembling and 
organizing a database of propositions written in a familiar syntax

• ongoing work involves building extensions to content management systems 
(e.g., Drupal, MediaWiki) to support:

– assembly of lecture notes that include verifiable formal arguments and 
assignments to be completed in the environment

– assembly of a database of formal facts written in a familiar syntax
• grouping of formal facts into collections

• association of collections of facts with assignments and examples in the notes

– logging of usage patterns
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- authors lecture notes w/ examples
- assembles assignments
- specifies available propositions

formal systems expert
- implements integrated algorithms
- implements translations to other
systems

we describe some of the infrastructure components 

supporting the tasks in which a formal systems expert 

may need to engage to implement an environment

enrolled student
- uses environment to complete assignments
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translator
(Alloy) Alloy

evaluation
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common meta-language

for formal expressions

(terms and formulas)

formal systems expert

all component algorithms are implemented to process 

an expression language chosen for the particular 

application domain supported by the environment
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evaluation algorithm
for boolean formulas

∀x ∈ Z, (x > 0 ⇒ x+ 1 > 1)

true ∧ false
formal systems expert

falsecomponents assumed to be expression transformations

• other kinds of algorithms may exist, but are not yet 
supported
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evaluation algorithm
for boolean formulas

∀x ∈ Z, (x > 0 ⇒ x+ 1 > 1)

true ∧ false
formal systems expert

falsea component implementation might be accompanied by…

• algorithm for recognizing conditions under which the 
algorithm can be applied…

– subset of expressions

– context

• algorithm for computing upper bound on execution time of 
the algorithm for an input
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translator for
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a component implementation might be accompanied by…

• algorithm for recognizing conditions under which the 
algorithm can be applied…

– subset of expressions

– context
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model checker
(sound but
incomplete)

∀x ∈ Z, (x > 0 ⇒ x+ 1 > 1)

true on {−100, . . . , 100}

formal systems expert

a component implementation might be accompanied by…

• algorithm for recognizing conditions under which the 
algorithm can be applied…

– subset of expressions

– context

• algorithm for generating human-friendly interpretation of 
its result
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component interactions 
induce a dependency graph 
between components
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• what are some ways to address the 
dependencies between components?

• if the dependency graph between 
components is acyclic (i.e., a DAG)…
– at compile time, determine dependencies from 

implementation and generate environment code 
appropriately

• if the dependency graph has cycles…
– generate code that continues making passes until 

convergence

– generate code that is restricted to, or allows a 
finite number of passes

• determined by the user?
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• syntactic idioms
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• libraries

– definitions

– propositions
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– the definition of an integrated environment 
incorporates component algorithms, backend 
tools, and user interface components
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– the definition of an integrated environment 
incorporates component algorithms, backend 
tools, and user interface components

– a custom high-level programming language, 
informl, is used to implement component 
algorithms

– language features include:
• easy construction of parsers

• abstract syntax (i.e., algebraic data types) and 
supported operations

• can be compiled to JavaScript, PHP, and Haskell
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• use case: prototype used in classroom instruction
– introductory linear algebra course

• primarily undergraduates; about 75% sophomores or freshmen

– integrated environment utilized…
• by instructor to present examples integrated into notes

• by students to complete homework assignments

• by graders

– integrated components include
• congruence closure computation

• monomorphic type checking

• limited first-order logical verification

• set algebra and linear algebra evaluation algorithms

• use case: secure network protocols (other ongoing work)
– integration of non-interference checking, congruence closure 

computation, type checking, Alloy, and SPIN

• open question: what is a meaningful way to evaluate the 
effectiveness of an integrated environment?
– surveys, student performance, etc.

– are there useful techniques in other disciplines?
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