
Andrei Lapets

Boston University May 8, 2012

Accessible Integrated
Formal Reasoning Environments in 

Classroom Instruction of Mathematics



2

logical
resolution

algorithm #1

verification
algorithm

congruence
closure

algorithm

monomorphic
type checking

logical
unification

algorithm #1

logical
unification

algorithm #2

Alloy

SPIN

ProVerif

Isabelle
evaluation

algorithm for
set algebra

polymorphic
type inference

algorithm

higher-order
type system

evaluation
algorithm for
linear algebra

SAT/SMT

solver

non-interference
checker

many tools and techniques have been developed by the programming

languages, formal verification, and model checking communities 



3

environment

logical
resolution

algorithm #1

verification

algorithm

congruence

closure

algorithm

monomorphic
type checking

logical
unification

algorithm #1

logical

unification

algorithm #2

Alloy

SPIN

ProVerif

Isabelle

evaluation

algorithm for

set algebra

polymorphic

type inference

algorithm

higher-order

type system

evaluation
algorithm for

linear algebra

SAT/SMT

solver

non-interference

checker

end-user
- engages in formal reasoning tasks

– a single environment can…
• allow users to leverage multiple tools and techniques 

using a uniform, familiar interface and representation

• make setup easy, or (if web-based) unnecessary

– these benefits may lead to more widespread 
utilization of existing tools and techniques



4

integrated environment

logical
resolution

algorithm #1

verification

algorithm

congruence

closure

algorithm

monomorphic
type checking

logical
unification

algorithm #1

logical

unification

algorithm #2

Alloy

SPIN

ProVerif

Isabelle

evaluation

algorithm for

set algebra

polymorphic

type inference

algorithm

higher-order

type system

evaluation
algorithm for

linear algebra

SAT/SMT

solver

non-interference

checker

– focus is not on rigorous formal safety or correctness 
of integration of components

• most formal models of domains are incomplete

• however, two approaches are complementary

– value of integration: an automated interactive
environment with multiple kinds of instant feedback
identifying problems for users

end-user
- engages in formal reasoning tasks



5

accessible integrated environment

logical
resolution

algorithm #1

verification

algorithm

congruence

closure

algorithm

monomorphic
type checking

logical
unification

algorithm #1

logical

unification

algorithm #2

Alloy

SPIN

ProVerif

Isabelle

evaluation

algorithm for

set algebra

polymorphic

type inference

algorithm

higher-order

type system

evaluation
algorithm for

linear algebra

SAT/SMT

solver

non-interference

checker

– no setup; no special environment needed

– familiar or conventional domain-specific syntax

– interactive, immediate feedback (guidance, results, 
validity)

– at least some feedback for partial arguments

– flexibility with regard to level of detail

end-user
- engages in formal reasoning tasks



6

in this work we are developing:

– a proposed collection of conventions and practical tools
for building, instantiating, and delivering to end-users 
accessible and integrated formal reasoning environments

– a context for posing questions about the integration of 
automated formal algorithms and tools with one another and 
with other supporting components



7

end-user
- engages in formal reasoning tasks

administrator/domain expert
- instantiates domain-specific libraries
- authors/ curates library contents
- manages environment/embeddings

formal systems expert
- implements integrated algorithms
- implements translations to other
systems

accessible integrated environment

logical

resolution
algorithm #1

verification
algorithm

congruence

closure

algorithm

monomorphic
type checking

logical
unification

algorithm #1

logical
unification

algorithm #2

Alloy

SPIN

ProVerif

Isabelle

evaluation

algorithm for

set algebra

polymorphic

type inference
algorithm

higher-order
type system

evaluation

algorithm for
linear algebra

SAT/SMT
solver

non-interference
checker

we assume that there exist three user roles (possibly 

overlapping) that an infrastructure for accessible 

integrated environments must accommodate



8

accessible integrated environment

logical

resolution
algorithm #1

verification
algorithm

congruence

closure

algorithm

monomorphic
type checking

logical
unification

algorithm #1

logical
unification

algorithm #2

Alloy

SPIN

ProVerif

Isabelle

evaluation

algorithm for

set algebra

polymorphic

type inference
algorithm

higher-order
type system

evaluation

algorithm for
linear algebra

SAT/SMT
solver

non-interference
checker

course instructor
- authors lecture notes w/ examples
- assembles assignments
- specifies available propositions

formal systems expert
- implements integrated algorithms
- implements translations to other
systems

these roles may correspond to more specific user 

types in particular application domains, such as 

classroom instruction

enrolled student
- uses environment to complete assignments



9

accessible integrated environment

logical

resolution
algorithm #1

verification
algorithm

congruence

closure

algorithm

monomorphic
type checking

logical
unification

algorithm #1

logical
unification

algorithm #2

Alloy

SPIN

ProVerif

Isabelle

evaluation

algorithm for

set algebra

polymorphic

type inference
algorithm

higher-order
type system

evaluation

algorithm for
linear algebra

SAT/SMT
solver

non-interference
checker

course instructor
- authors lecture notes w/ examples
- assembles assignments
- specifies available propositions

formal systems expert
- implements integrated algorithms
- implements translations to other
systems

we briefly describe how an end-user might experience 

such an environment by looking at a prototype used in 

an undergraduate mathematics course

enrolled student
- uses environment to complete assignments



10

online course notes contain verifiable arguments that can be viewed by students 

either in a friendly format or as verifiable formal syntax 



11

verifiable formal arguments included in the course notes can be loaded instantly 

into the integrated environment 



12

students can view and explore the propositions made available for an 

assignment by the instructor



13

actual examples of verifiable formal arguments assembled by students 



14

actual examples of verifiable formal arguments assembled by students 



15

accessible integrated environment

logical

resolution
algorithm #1

verification
algorithm

congruence

closure

algorithm

monomorphic
type checking

logical
unification

algorithm #1

logical
unification

algorithm #2

Alloy

SPIN

ProVerif

Isabelle

evaluation

algorithm for

set algebra

polymorphic

type inference
algorithm

higher-order
type system

evaluation

algorithm for
linear algebra

SAT/SMT
solver

non-interference
checker

course instructor
- authors lecture notes w/ examples
- assembles assignments
- specifies available propositions

formal systems expert
- implements integrated algorithms
- implements translations to other
systems

the supporting tools for a course instructor are 

currently a work in progress

enrolled student
- uses environment to complete assignments



16

• in earlier work, interfaces were built for collaboratively assembling and 
organizing a database of propositions written in a familiar syntax

• ongoing work involves building extensions to content management systems 
(e.g., Drupal, MediaWiki) to support:

– assembly of lecture notes that include verifiable formal arguments and 
assignments to be completed in the environment

– assembly of a database of formal facts written in a familiar syntax
• grouping of formal facts into collections

• association of collections of facts with assignments and examples in the notes

– logging of usage patterns



17

accessible integrated environment

logical

resolution
algorithm #1

verification
algorithm

congruence

closure

algorithm

monomorphic
type checking

logical
unification

algorithm #1

logical
unification

algorithm #2

Alloy

SPIN

ProVerif

Isabelle

evaluation

algorithm for

set algebra

polymorphic

type inference
algorithm

higher-order
type system

evaluation

algorithm for
linear algebra

SAT/SMT
solver

non-interference
checker

course instructor
- authors lecture notes w/ examples
- assembles assignments
- specifies available propositions

formal systems expert
- implements integrated algorithms
- implements translations to other
systems

we describe some of the infrastructure components 

supporting the tasks in which a formal systems expert 

may need to engage to implement an environment

enrolled student
- uses environment to complete assignments



18

translator
(Alloy) Alloy

evaluation
algorithm for
set algebra

monomorphic type
checking

display/visualization
scheme #1

display/visualization
scheme #2

display/visualization
scheme #3

common meta-language

for formal expressions

(terms and formulas)

formal systems expert

all component algorithms are implemented to process 

an expression language chosen for the particular 

application domain supported by the environment



19

evaluation algorithm
for boolean formulas

∀x ∈ Z, (x > 0 ⇒ x+ 1 > 1)

true ∧ false
formal systems expert

falsecomponents assumed to be expression transformations

• other kinds of algorithms may exist, but are not yet 
supported



20

evaluation algorithm
for boolean formulas

∀x ∈ Z, (x > 0 ⇒ x+ 1 > 1)

true ∧ false
formal systems expert

falsea component implementation might be accompanied by…

• algorithm for recognizing conditions under which the 
algorithm can be applied…

– subset of expressions

– context

• algorithm for computing upper bound on execution time of 
the algorithm for an input



21

translator for
constraint solver

∀x ∈ Z, (x > 0 ⇒ x+ 1 > 1)

formal systems expert

true

constraint

solver

a component implementation might be accompanied by…

• algorithm for recognizing conditions under which the 
algorithm can be applied…

– subset of expressions

– context



22

model checker
(sound but
incomplete)

∀x ∈ Z, (x > 0 ⇒ x+ 1 > 1)

true on {−100, . . . , 100}

formal systems expert

a component implementation might be accompanied by…

• algorithm for recognizing conditions under which the 
algorithm can be applied…

– subset of expressions

– context

• algorithm for generating human-friendly interpretation of 
its result



23

constraint
solver∀x ∈ Z

>

⇒

> >

x+ 1 10x

∀y ∈ Z

3 1

∧

(∀y ∈ Z, 3 > 1) ∧ (∀x ∈ Z, (x > 0 ⇒ x+ 1 > 1))

true

evaluation
algorithm true

model
checker true on {−100, . . . , 100}

component interactions 
induce a dependency graph 
between components



24

linear algebra

general-purpose logic

graph theory

enumeration

algorithm #1

verification

algorithm #1

type checking

and inference

verification 

algorithm #3

verification

algorithm #2

evaluation

algorithm #2

enumeration

algorithm #1

resolution
congruence

closure
translator unification

Alloy

external components



25

• what are some ways to address the 
dependencies between components?

• if the dependency graph between 
components is acyclic (i.e., a DAG)…
– at compile time, determine dependencies from 

implementation and generate environment code 
appropriately

• if the dependency graph has cycles…
– generate code that continues making passes until 

convergence

– generate code that is restricted to, or allows a 
finite number of passes

• determined by the user?



26

translator
(Alloy) Alloy

monomorphic
type checking

algorithm

translator
(SPIN)

SPIN

evaluation
algorithm for
set algebra

congruence
closure

algorithm

formal systems expert

administrator/domain expert

databases contain…

• syntactic idioms

– constructs

– predicates

– operators

• libraries

– definitions

– propositions



27

translator

(Alloy) Alloy

model checking

algorithm

translator

(SPIN) SPIN

Verification

algorithm

congruence

closure
algorithm

formal systems expert

administrator/domain expert

display/visualization

scheme #1

display/visualization

scheme #2

display/visualization
scheme #3

display/visualization

scheme #4

– the definition of an integrated environment 
incorporates component algorithms, backend 
tools, and user interface components



28

– the definition of an integrated environment 
incorporates component algorithms, backend 
tools, and user interface components

– a custom high-level programming language, 
informl, is used to implement component 
algorithms

– language features include:
• easy construction of parsers

• abstract syntax (i.e., algebraic data types) and 
supported operations

• can be compiled to JavaScript, PHP, and Haskell

translator

(Alloy) Alloy

model checking

algorithm

translator

(SPIN) SPIN

Verification

algorithm

congruence

closure
algorithm

formal systems expert

administrator/domain expert

display/visualization

scheme #1

display/visualization

scheme #2

display/visualization
scheme #3

display/visualization

scheme #4

informlJavaScript



29

translator

(Alloy) Alloy

model checking

algorithm

translator

(SPIN) SPIN

Verification

algorithm

congruence

closure
algorithm

formal systems expert

administrator/domain expert

display/visualization

scheme #1

display/visualization

scheme #2

display/visualization
scheme #3

display/visualization

scheme #4

end-user



30

translator

(Alloy) Alloy

model checking

algorithm

translator

(SPIN) SPIN

Verification

algorithm

congruence

closure
algorithm

formal systems expert

administrator/domain expert

display/visualization

scheme #1

display/visualization

scheme #2

display/visualization
scheme #3

display/visualization

scheme #4

end-user



31

Alloy

SPIN

formal systems expert

administrator/domain expert
end-user

translator

(Alloy) Alloy

model checking

algorithm

translator

(SPIN) SPIN

Verification

algorithm

congruence

closure
algorithm

display/visualization

scheme #1

display/visualization

scheme #2

display/visualization
scheme #3

display/visualization

scheme #4

Alloy

SPIN

Alloy

SPIN



32

Alloy

SPIN

formal systems expert

administrator/domain expert
end-user

translator
(Alloy)

model checking
algorithm

translator
(SPIN)

Verification
algorithm

congruence
closure

algorithm

display/visualization
scheme #1

display/visualization
scheme #1

display/visualization
scheme #1

display/visualization
scheme #1

translator

(Alloy) Alloy

model checking

algorithm

translator

(SPIN) SPIN

Verification

algorithm

congruence

closure
algorithm

display/visualization

scheme #1

display/visualization

scheme #2

display/visualization
scheme #3

display/visualization

scheme #4

Alloy

SPIN

Alloy

SPIN

compiled (informl compiler)

content 
management 
system

display/visualization
scheme #1

display/visualization
scheme #1

display/visualization
scheme #1

display/visualization
scheme #1



33

Alloy

SPIN

formal systems expert

administrator/domain expert
end-user

translator
(Alloy)

model checking
algorithm

translator
(SPIN)

Verification
algorithm

congruence
closure

algorithm

display/visualization
scheme #1

display/visualization
scheme #1

display/visualization
scheme #1

display/visualization
scheme #1

translator

(Alloy) Alloy

model checking

algorithm

translator

(SPIN) SPIN

Verification

algorithm

congruence

closure
algorithm

display/visualization

scheme #1

display/visualization

scheme #2

display/visualization
scheme #3

display/visualization

scheme #4

Alloy

SPIN

Alloy

SPIN

content 
management 
system

display/visualization
scheme #1

display/visualization
scheme #1

display/visualization
scheme #1

display/visualization
scheme #1

JavaScript JavaScript & PHP



34

Alloy

SPIN

formal systems expert

administrator/domain expert
end-user

display/visualization
scheme #1

display/visualization
scheme #1

display/visualization
scheme #1

display/visualization
scheme #1

translator

(Alloy) Alloy

model checking

algorithm

translator

(SPIN) SPIN

Verification

algorithm

congruence

closure
algorithm

display/visualization

scheme #1

display/visualization

scheme #2

display/visualization
scheme #3

display/visualization

scheme #4

content 
management 
system

display/visualization
scheme #1

display/visualization
scheme #1

display/visualization
scheme #1

display/visualization
scheme #1

Alloy

SPIN

Alloy

SPIN

translator
(Alloy)

model checking
algorithm

translator
(SPIN)

Verification
algorithm

congruence
closure

algorithm



35

Alloy

SPIN

formal systems expert

administrator/domain expert
end-user

display/visualization
scheme #1

display/visualization
scheme #1

display/visualization
scheme #1

display/visualization
scheme #1

translator

(Alloy) Alloy

model checking

algorithm

translator

(SPIN) SPIN

Verification

algorithm

congruence

closure
algorithm

display/visualization

scheme #1

display/visualization

scheme #2

display/visualization
scheme #3

display/visualization

scheme #4

content 
management 
system

display/visualization
scheme #1

display/visualization
scheme #1

display/visualization
scheme #1

display/visualization
scheme #1

JavaScript JavaScript & PHP

Alloy

SPIN

Alloy

SPIN

translator
(Alloy)

model checking
algorithm

translator
(SPIN)

Verification
algorithm

congruence
closure

algorithm

Haskell

(compiled to
binaries)



36

Alloy

SPIN

formal systems expert

administrator/domain expert
end-user

translator
(Alloy)

model checking
algorithm

translator
(SPIN)

Verification
algorithm

congruence
closure

algorithm

display/visualization
scheme #1

display/visualization
scheme #1

display/visualization
scheme #1

display/visualization
scheme #1

translator

(Alloy) Alloy

model checking

algorithm

translator

(SPIN) SPIN

Verification

algorithm

congruence

closure
algorithm

display/visualization

scheme #1

display/visualization

scheme #2

display/visualization
scheme #3

display/visualization

scheme #4

Alloy

SPIN

Alloy

SPIN

content 
management 
system

display/visualization
scheme #1

display/visualization
scheme #1

display/visualization
scheme #1

display/visualization
scheme #1

MySQL



37

• use case: prototype used in classroom instruction
– introductory linear algebra course

• primarily undergraduates; about 75% sophomores or freshmen

– integrated environment utilized…
• by instructor to present examples integrated into notes

• by students to complete homework assignments

• by graders

– integrated components include
• congruence closure computation

• monomorphic type checking

• limited first-order logical verification

• set algebra and linear algebra evaluation algorithms

• use case: secure network protocols (other ongoing work)
– integration of non-interference checking, congruence closure 

computation, type checking, Alloy, and SPIN

• open question: what is a meaningful way to evaluate the 
effectiveness of an integrated environment?
– surveys, student performance, etc.

– are there useful techniques in other disciplines?



acknowledgements

Andrei Lapets

Rick Skowyra

Christine Bassem

Nate Soule

Assaf Kfoury

Azer Bestavros

Computer Science Dept., Boston University

Hariri Institute at Boston University

NSF Grants No. 0820138 and No. 0720604


