
© Copyright 2015 Rockwell Collins.
All rights reserved.

Achieving High Speed and High
Assurance in a Hardware-Based
Cross-Domain System using Guardol

David Hardin
Konrad Slind  

© 2015 Rockwell Collins. All rights reserved.

Collaborators

• Mark Bortz — Hardware expert
• Doug Hiratzka, Jim Potts — Embedded systems software experts

• Mike Whalen, Hung Pham (University of Minnesota) — RADA
solver for algebraic data types

• Scott Owens — unpaid consultant

© 2015 Rockwell Collins. All rights reserved.

Motivation

• As critical systems become networked, they become vulnerable
to cyber attacks

• New cyber vulnerabilities appear regularly: Shellshock, POODLE,
Heartbleed, etc.
• Appearance of vulnerabilities has outpaced industry’s ability

to find and fix
• A number of these flaws have been present for years, and

many have survived the scrutiny of the "many eyes" of
open source development

• Critical systems tend to use the same operating systems,
network stacks, etc., as commercial off-the-shelf-systems
• But, older “stable” versions tend to be used, making critical

systems vulnerable to known attacks
• Critical systems are not patched often, leading to long

exposure times

© 2015 Rockwell Collins. All rights reserved.

Cross-Domain Systems (CDS, a.k.a. Guards)

• A guard mediates information flow between security domains
according to a specified policy.

• Guards are often implemented on top of some “high-
assurance” operating system, but usually not the current
release of that OS

⎯ Very long exposure time for vulnerabilities
⎯ Often, the Operating System is just an old version of Linux

• The guard policy is generally a rule set that is interpreted on a
packet-by-packet basis by the guard software

⎯ The language used to encode guard logic is peculiar to the individual guard
vendor

⎯ Little to no automated V&V support
⎯ Performance is highly variable, depending on rule complexity

The Guardol program is significantly advancing the state of
the art in guard portability, assurance, and performance.

© 2015 Rockwell Collins. All rights reserved.

Rockwell Collins CDS Products

• Turnstile
• AAMP7G-based
• DCID 6/3 PL5

• MicroTurnstile
• AAMP7G-based
• Very low power, wearable
• “Bump in the wire” USB Guard

• SecureOne Guard
• Based on commercial separation kernel technology
• Shares Guard Engine software with Turnstile and

MicroTurnstile

• US Patents 7,606,254, 8,161,259, and 8,881,260

© 2015 Rockwell Collins. All rights reserved.

Guardol Objectives

• Develop a Domain-Specific Language (DSL) for guards
⎯ A DSL is a programming language dedicated to a particular

problem domain, representation style, and/or solution technique
• Automate the design flow

⎯ Analysis and implementation artifacts automatically generated
with high assurance

• Integrated analysis capability
⎯ Formalization of a Guardol source program automatically

generated by the frontend of the Guardol toolchain
⎯ Middle-end of Guardol utilizes the HOL4 theorem prover, operating

in “headless” fashion
⎯ Model checking of key requirements from the guard specification

• Support for a wide variety of guard platforms
⎯ Demonstrated operation on a competitor’s guard
⎯ Demonstrated real-time imaging guard for MicroTurnstile
⎯ Able to support high-performance hardware guards (New work)

© 2015 Rockwell Collins. All rights reserved.

Guardol Toolchain Architecture

Guardol  
Source

(Eclipse Editor)

Generated
Verification
Conditions

Guardol
Frontend

Operational
Semantics

Generated
CodeG

HOL4
Functional
Decompiler

VC Gen

Gs

Guardol
S-expression

RADA (interface
to SMT solver)

Datatype
Decision

Procedure

G
Counterexample

X

Compiler

© 2015 Rockwell Collins. All rights reserved.

Guardol Eclipse Environment

© 2015 Rockwell Collins. All rights reserved.

The Guardol Language

• Guardol can be characterized as a “mashup” of concepts from
Ada, ML, and the C family of languages

• Guardol is, first and foremost, a strongly-typed imperative
language, with assignment, functions, for loops, while loops,
etc.

 function guard_main() = {
 var sz: int;
 pkt: GMTI_Pkt;
 in
 while (sz > 0) do {
 guard_result := guard(pkt);
 …
 }
 }

© 2015 Rockwell Collins. All rights reserved.

The Guardol Language (cont’d.)

• Types, however, are influenced by the functional language ML:

type Tree = [elem: int, rank: int, children TreeList]

type TreeList = { Nil
 | Cons : [hd: Tree, tl: TreeList]}

type IntOpt = { NONE | SOME : int }

© 2015 Rockwell Collins. All rights reserved.

The Guardol Language (cont’d.)

• Guardol also inherits the powerful “match” operator from ML:

 function ins (t: in Tree, tlist: in TreeList)
 returns Output: TreeList = {
 match tlist {
 ’Nil => Output := ’Cons[hd: t, tl: ’Nil] ;
 ’Cons c =>
 if t.rank < c.hd.rank then
 Output := ’Cons [hd: t, tl: tlist];
 else
 Output := ins(link(t, c.hd), c.tl);
 }
 }

© 2015 Rockwell Collins. All rights reserved.

The Guardol Language (cont’d.)

• Many of the design decisions in Guardol anticipated features of
“hot” new programming languages, e.g. Apple’s Swift:

 static func ins (t: Tree, tlist: TreeList) -> TreeList {
 switch tlist {
 case .Nil: return TreeList.Cons(t, TreeList.Nil);
 case let .Cons(hd, tl):
 if t.rank < hd.rank {
 return TreeList.Cons(t, tlist);
 } else {
 return ins(link(t, t2: hd), tlist: tl);
 }
 }
 }

© 2015 Rockwell Collins. All rights reserved.

Guardol Property Specifications and Proofs

• A novel Guardol feature is the ability to state and prove formal
property specifications directly in the source text, using Guardol
language syntax

• The following property spec conjectures that if a TreeList is rank-
ordered, it is still rank-ordered after a new tree is inserted:

 spec rank_ordered_ins = {
 var t: Tree;
 list: TreeList;
 in
 if rank_ordered(list)
 then check rank_ordered(ins(t, tlist));
 else skip;
 }

• The Guardol verification backend proves this property
automatically

© 2015 Rockwell Collins. All rights reserved.

Adding Regular Expressions to Guardol

• Based on customer feedback, we have recently added regular
expression support to Guardol.

• Regular expression matching can be invoked within a Guardol
program by:

 verdict := regex_match(rlit, s);

where rlit is a regular expression literal, s is a string, and verdict is
a boolean result.

© 2015 Rockwell Collins. All rights reserved.

Guardol Regular Expression Literals

• Regular expression literals in Guardol largely conform to the
syntax found in languages like Python.

\d = 0..9
\w = [a-zA-Z0-9_]
. = any char except \n
\s = whitespace = [\n\r\t\f] (* Note the space character! *) \t = tab
\n = newline
\r = return
\f = formfeed
\c = escape c
rs = concatenation r|s = disjunction r* = Kleene star
r+ = rr*
r? = "" | r
r{n} = r^n
r{m,n} = r{m} | r{m+1} | ... | r{n} (m<=n) r{m,} = r{m}r*
r{,n} = r{0,n}
(r) = grouping
[...] = character set

© 2015 Rockwell Collins. All rights reserved.

Fast Regular Expression Matching

• Brzozowski (1964) presents a method for compiling a regular
expression to a Deterministic Finite-state Automaton (DFA),
which is subsequently run on strings.

• The essential insight behind Brz is that regexs are identified with
DFA states:

• The given regex r0 is the start state

• For each symbol ai in the alphabet, compute
 rai = Deriv ai r. The rai are the successor states to r

• Stop when no new states are created
• Final states are those that match the empty string

• Thus, regular expression matching becomes very fast

© 2015 Rockwell Collins. All rights reserved.

Compiling Regular Expressions to DFAs

• The following pseudo-code executes DFA d on input s:

 Exec_DFA (d:DFA, s:string) returns verdict:bool = {
 var
 q,len : int;
 in
 len := s’Length;  

 q := d.init;  
 for (i=0; i<len; i++) { q := d.trans[q,s[i]]; } 
 verdict := member(q,d.final);

}

• Brzozowski provided a pencil-and-paper proof of the correctness of
his DFA compilation approach

• We have crafted a formalization in HOL4, which we utilize in Guardol
code generation
• Employs a counter to avoid tricky termination issues

© 2015 Rockwell Collins. All rights reserved.

Side Note: Code Generation vs. Proof

• A regex_match expression in a Guardol program is treated
differently whether code is being generated, or properties are
to be proved.

regex_match(rlit, s) Matches r s

Exec_DFA(Brz(r), s)

Property Generation

Code Generation

© 2015 Rockwell Collins. All rights reserved.

Guardol Regular Expression Demo Program

package Regex =

-- Filter for full syslog message. Meant to handle messages conforming to either
-- RFC 5424 or RFC 3164. Skips over leading information by looking for an occurrence
-- of a space followed by an open bracket, i.e., " [". After that, it expects
-- the remainder of the structured data portion of the message.

function syslog_5424_or_3164_filter (input : in string) returns verdict : bool = {
 verdict := regex_match(
 ‘.* \[\{"time":"\d{13}(:\d{3})?","\w{1,20}":\{("\w{1,25}":"\w{1,30}",?)+\}\}\]‘,
 input); }
end

This filters a syslog packet against a JSON-based packet format.

© 2015 Rockwell Collins. All rights reserved.

Generated Ada code

package body Regex is
 function execDFA_1 (str : in String) return Boolean is
 verdict : Boolean; state : uint; len : uint; i : uint;
 begin
 state := Regex.DFA_1.start; i := 0; len := str’Length;

 while (i < len) loop
 i := (i + 1);
 state := Regex.DFA_1.trans(Natural(state),Natural(Character’Pos(str(i))));
 end loop;

 verdict := Regex.DFA_1.final(Natural(state));
 return(verdict);
 end;

 function syslog_5424_or_3164_filter (input : in String) return Boolean is
 verdict : Boolean;
 begin
 verdict := Regex.execDFA_1(input); return(verdict);
 end;
end Regex;

© 2015 Rockwell Collins. All rights reserved.

Guardol for Hardware Guards Program Overview

• Adapt an existing Rockwell Collins FPGA-based board with dual
network interfaces to function as a guard

• Adapt the Guardol toolchain to generate VHDL for a subset of
legal Guardol programs

• Demonstrate a Guardol regular-expression based guard running
on the hardware

• Provide performance measurements for the hardware-based
guard

• Produce guidance for the modification of accreditation artifacts for
a Rockwell Collins product guard, such as the SecureOne Guard

© 2015 Rockwell Collins. All rights reserved.

Guardol for Hardware Guards (Analysis not shown)

Guardol  
Source

Guardol
FrontendG

HOL4

VHDL
Compiler

Bit file

FPGA

CPU
Core

CPU
Core

Guardol-Derived
Guard
Logic

VHDL
source

“High”
Network

“Low”
Network

 Accept/
 Reject

Guard
RAM

 Rd/Wr

© 2015 Rockwell Collins. All rights reserved.

Guard Hardware

© 2015 Rockwell Collins. All rights reserved.

Guardol-to-VHDL Code Generation

• Modify the Guardol code generator to produce VHDL

• VHDL and Ada are very similar syntactically, but differ
significantly at the semantic level
• Must always be concerned about parallelism

• Not all legal Guardol programs will be able to be translated to
VHDL initially, e.g. Guardol programs that allocate memory

⎯ However, regular expression guards are readily translatable to
VHDL

• Have performed preliminary translations and have successfully
simulated them using the Xilinx tools; currently in synthesis

© 2015 Rockwell Collins. All rights reserved.

Ada vs. Synthesizable VHDL

• Easy to translate Ada to compilable, but non-synthesizable VHDL
• Numerous small syntactic differences

• However, it’s not always clear whether a given VHDL model is synthesizable
• Can fail along either time or space dimensions
• Often, just have to try to synthesize, and see what happens

• Sequential execution model -> Parallel execution model

• Many other changes, often, but not always, needed

• Variables -> signals
• Boolean type -> std_logic
• Integer type -> std_logic_vector
• Loop, with control variables -> process, with sensitivity list
• String -> RAM entity

© 2015 Rockwell Collins. All rights reserved.

Generated VHDL code
architecture RTL of GUARDOL_GEN is
 constant DFA_1 : DFA_1_components :=
 (trans => […] — array of next state values
 start => 1, — start state
 final => […]); — boolean array indicating final states;

begin
 […]
 ACCEPT_REJECT: process (q_curr_state)
 begin
 if (DFA_1.final(Natural(q_curr_state))) then
 i_accept <= '1'; -- accept
 i_reject <= '0';
 else
 i_accept <= '0'; -- reject
 i_reject <= '1';
 end if;
 end process;

 STATE_MACHINE_DFA : process (q_curr_state, DATA_VALID, NEW_PACKET)
 begin
 if (NEW_PACKET = '1') then
 n_curr_state <= DFA_1.start;
 elsif (DATA_VALID = '1') then
 n_curr_state <= DFA_1.trans(Natural(q_curr_state), to_integer(unsigned(DATA)));
 else
 n_curr_state <= q_curr_state;
 end if;
 end process;
 […]
end architecture;

© 2015 Rockwell Collins. All rights reserved.

Performance

• Regex guard is designed to examine one byte per clock tick

• Guard RAM is 64 bits wide, so only need to read the RAM once
every 8 bytes
• Incur an additional one cycle delay in this case

• System clock for existing guard hardware is 167 MHz

• One extra clock at the end to latch the final accept/reject result

• Thus, the performance for a regular expression guard is
approximately 1.2 Gbps
• Our VHDL simulations support this result

© 2015 Rockwell Collins. All rights reserved.

Conclusion

Guardol technology enables the development of a new class
of hardware-based guards with significantly higher
assurance and greater performance.

High Assurance:
• Hardware guard engine for best protection against attacks
• Automated formal proofs of guard properties
• Formal proof of correctness for compilation for regex guards

High Performance:
• Guardol compilation to hardware much higher performance

than rule interpretation in software
• Goal is to achieve line-speed operation for complex regular-

expression guards

