
1
Definition of Safety Design Patterns
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Actionable Definition of Safety
Design Patterns Using AADLv2,
ALISA, and the Error Modeling
Annex

Jerome Hugues

2
Definition of Safety Design Patterns
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-
0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other use. Requests for permission should be directed
to the Software Engineering Institute at permission@sei.cmu.edu.

DM20-0759

3
Definition of Safety Design Patterns
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Actionable safety patterns – ISSE project

ISSE project: interplay between safety and security.
• Hazard analysis
• Extended analysis for safety and security, with Kansas State U. (J. Hatcliff group)
• Defining safety and security policies as patterns
Literature on safety patterns keeps being informal, e.g. [1]
• Negative impact on reuse of established expertise and practice

Today: Definition of safety patterns as library of models & verification plans
using AADL & additional notations: ALISA, AWAS & AGREE

[1] C. Preschern et al. “Safety Architecture Pattern System with Security Aspects”,
https://doi.org/10.1007/978-3-030-14291-9_2

4
Definition of Safety Design Patterns
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Making Critical Systems Safer and More Secure

Modern embedded systems need to be both safe and secure.
As we have seen, the pace and scale of the development of
these systems means traditional methods cannot keep up.

External ResearchPrevious SEI Research

DoD/DHS/
Governmental
Needs

Relevant
Standards

STPA

AADL Error
Modeling
Annex

AADL
Security
Research

This Project

System
Auditors

System
Testers

System
Designers

Research to Practice
The SEI works to rapidly move ideas from research in
embedded systems – conducted either here at the SEI, in
academia, or in industry – to practice.

5
Definition of Safety Design Patterns
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Core AADL language standard [V1 2004, V2 2012, V2.2 2017]
• Focused on embedded software system modeling, analysis, and generation
• Strongly typed language with well-defined semantics for execution of threads, processes on

partitions and processor, sampled/queued communication, modes, end to end flows
• Textual and graphical notation
• V3 in progress: interface composition, system configuration, binding, type system unification

Ongoing work to align AADL and SysML in a common workflow -> Adventium Labs, ANSYS, SEI

AADL Standard Suite (AS-5506 series)

Standardized AADL Annex Extensions
• Error Model language for safety, reliability, security analysis [2006, 2015]
• ARINC653 extension for partitioned architectures [2011, 2015]
• Behavior Specification Language for modes and interaction behavior [2011, 2017]
• Data Modeling extension for interfacing with data models (UML, ASN.1, …) [2011]
• AADL Runtime System & Code Generation [2006, 2015]
• FACE Annex [2019]

AADL Annexes in Progress
• Network Specification Annex
• Cyber Security Annex

Roadmap
• Requirements Definition and Assurance Annex

6
Definition of Safety Design Patterns
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

AADL Error Model Scope and Purpose

System safety process uses many individual methods and analyses, e.g.
• hazard analysis
• failure modes and effects analysis
• fault trees
• Markov processes

Goal: a general facility for modeling fault/error/failure behaviors that can be used for several modeling and
analysis activities.

Related analyses are also useful for other purposes, e.g.
• maintainability
• availability
• Integrity
• Security

SAE ARP 4761 Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and Equipment
Demonstrated in SAVI Wheel Braking System Example

Annotated architecture model permits checking for consistency
and completeness between these various declarations.

System

Component

Subsystem

Capture FMEA model

Capture hazards

Capture risk mitigation architecture

Error Model Annex can be adapted to other ADLs

7
Definition of Safety Design Patterns
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Iterative Safety Analysis Process with AADL

System in Environment
Propagation points,

Hazards
FHA Report

Functional Hazard Assessment

Re
fin

em
en

t o
f A

rc
hi

te
ct

ur
e

La
ye

rs
/T

ie
rs

Preliminary System Safety Assessment

PSSA & other reports
(FMEA, FTA, DD, MA)

System as Subsystems
Error sources
propagations, flows,
Composite error state

Consistency

SSA Report
(FMEA, FMES, CCA)

System Safety Assessment
Consistency

Subsystem
Implementations

Redundancy logic detection
Composite error state

AFE61
COMPASS Project

Safety guaranteed by generic
architectural design patterns

Hazard analysis,
system-specific

Early system designs,
extending fault model

8
Definition of Safety Design Patterns
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Actionable safety patterns – workplan

Safety & security patterns are dual-sided
• As patterns, they propose a collection of design artefacts that fulfill some high-level

requirements like mitigation some errors, improving reliability or security
• As tactics, they propose a rationale for applying a pattern, and discuss improvements

to the system, and eventually drawbacks/limitations

In both cases, those are informally designed, strong expertise required to
• Define them: what is the best way to convey a specific pattern definition?
• Select them: which one is adapted to the current system design?
• Apply them: how to weave existing architecture with new components?
• Combine them: applying patterns is not commutative. Is there a preferred order?

9
Definition of Safety Design Patterns
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

TMR pattern
Adapted from [1]

Imprecisions:
• “input” the same? or three different paths (sensors ?) to get inputs?
• Voter algorithm and tolerance?
• Synchronization on voter inputs

[1] C. Preschern et al. “Safety Architecture Pattern System with Security Aspects”,
https://doi.org/10.1007/978-3-030-14291-9_2

10
Definition of Safety Design Patterns
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

From Patterns to Models – step #1 AADL models

Operationalize existing patterns:
• A pattern =

set of abstract components +
behavior +
fault model

Faulty components
(AADL/EMV2)

Voter (AADL/BA) +
EMV2

11
Definition of Safety Design Patterns
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

TMR pattern
Adapted from [1]

Pattern is also defined by a Safety GSN, providing grounds for safety arguments

50 C. Preschern et al.

Pattern Name Triple Modular Redundancy Pattern Pattern Type hardware, failover

AlsoKnownAs 2oo3 Pattern, Homogeneous Triplex Pattern
Context A safety-critical application without a fail-safe state, potentially many random

and few systematic faults.
Problem How to design a system which continues operating even in the presence of a fault

in one of the system components.
Forces - the system cannot shut down because it has no safe state

- safety standard requires high fault coverage for single-point of failure components
- high availability requires hardware platforms to be maintained at the runtime

Solution Three identical hardware channels operate in parallel. If a single fault occurs in one
channel then the other two channels still produce the correct output. A majority
voter decides for the correct result.

Safety GSN

Security GSN

Consequences This pattern does not identify the type or the reason of the fault; it just deter-
mines the module that contains a fault without correcting the fault itself. The
voter has to be very reliable.

Affected Attributes
Positively Negatively

Safety: Random faults in a single chan-
nel are masked
Availability: The full system function-
ality is still available in case of a single
random fault
Maintenance: Hardware channels can
be maintained at runtime

Triple hardware costs for system repli-
cation

General SC1 The system is fully operational even in case of a single channel failure.
Scenarios SC2 A single channel random fault does not lead to a system failure.
Known
Uses

- Turbine control sensor input (Kohanawa et al., 2010)
- SRAM applying TMR (Kyriakoulakos and Pnevmatikatos, 2009)
- TMS-1000R Gas Turbine - http://www.turbinetech.com

Credits (Douglass, 2002) formulates this well-known architecture as a pattern. (Armoush,
2010) adds detailed information about quality attribute related consequences.

[1
] C

.P
re

sc
he

rn
et

 a
l.

“S
af

et
y

A
rc

hi
te

ct
ur

e
P

at
te

rn
 S

ys
te

m
 w

ith
 S

ec
ur

ity
 A

sp
ec

ts
”,

ht
tp

s:
//d

oi
.o

rg
/1

0.
10

07
/9

78
-3

-0
30

-1
42

91
-9

_2

12
Definition of Safety Design Patterns
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

From Patterns to Models – step #2 ALISA verification plans

GSN acts as a template for ALISA verification plans, a companion DSL for AADL
• ALISA Goals are high-level concerns

• ALISA Requirements are intermediate or terminal nodes
system requirements TMR_Requirements for TMR::TMR_Archetype.impl [

description "High-level requirements for the TMR pattern."
see goals TMR_Stakeholders_Goals

requirement TMR_Feature_Output for Output
[. category Pattern_Goal.Safety

description "The voter unit operated properly"

development stakeholder Patterns_Role.Safety_Architect
see goal TMR_Stakeholders_Goals.goal_single_channel_failure_2

]

goal goal_single_channel_failure [
category Pattern_Goal.Safety

Safety_Pattern_Context.Random_Faults
description "The system is fully operational even in case of single channel failure"
stakeholder Patterns_Role.Safety_Auditor

Category of goals

Link to component instance

Link to specific model element

13
Definition of Safety Design Patterns
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

From Patterns to Models – step #2 ALISA verification plans

• ALISA requirements are attached to claims that are bound to verification methods

verification plan TMR_Plan for TMR_Requirements [
claim TMR_Requirements.TMR_Replication_Redundancy [
activities

checkReplicas : TMR_Registry.Three_Replicas (module)

check_Module_1 : AwasMethods.isQueryNotEmpty(q4)
check_Module_2 : AwasMethods.isQueryNotEmpty(q5)
check_Module_3 : AwasMethods.isQueryNotEmpty(q6)

no_common_sources_1 : AwasMethods.isQueryEmpty(q1)
no_common_sources_2 : AwasMethods.isQueryEmpty(q2)
no_common_sources_3 : AwasMethods.isQueryEmpty(q3)

]

claim TMR_Requirements.TMR_Voter [
activities

AGREE_Check: TMR_Registry.Voter_Correct ()
]

Execution of analysis
from OSATE or
3rd party plugins

Claim this requirement is verified

14
Definition of Safety Design Patterns
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

About “Replication Redundancy” goal

“Three identical HW channels” is incomplete
• They can by dissimilar but provide the

same data/service
• Must be ultimately three disjoint channels

proposing the same data
Properties on topology
• For all i, Input_i is connected to a

component implementing Module
• Backward path to Input_i does not

intersect backward path to Input_j for i /= j
Þ Use AWAS by Kansas State University

Global composition
(tool: AWAS)

// AWAS Query (subset)
val q1 = " (reach backward Voter.Input_3)
intersect (reach backward Voter.Input_1)"

15
Definition of Safety Design Patterns
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

About ”The voter unit operates properly” goal 1/2

Use AADL/BA for component behavior
• Compatible with code generation

abstract implementation Voter.impl
annex behavior_specification {**
states

idle : complete final state;
compute : initial state;

transitions
t1 : compute -[Input_1? = Input_2? and Input_1? = Input_3?]-> idle {Output := Input_1?};
-- [..]
t5 : compute -[Input_1? != Input_2? and Input_1? != Input_3?]

-> idle {Output := Input_1?; Error_Detected!};
**};
annex agree {**
-- ..
**};
end Voter.impl;

Im
pl

em
en

ta
tio

n

16
Definition of Safety Design Patterns
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

About ”The voter unit operates properly” goal 2/2

Use AGREE by Collins for interface contract
• Enables model checking
• Compliance between contract and BA

abstract implementation Voter.impl
annex behavior_specification {**
-- ..
**};
annex agree {**

eq output_eq : int = Input_1 -> if ((Input_1 = Input_2) and (Input_1 = Input_3))
then Input_1 else pre(output_eq);

eq error_detected_eq : bool = false -> (Input_1 <> Input_2) and (Input_1 <> Input_3);
-- Map equations to BA outputs
assert(Output = output_eq);
assert(Error_Detected = error_detected_eq);

**};
end Voter.impl;

C
on

tra
ct

17
Definition of Safety Design Patterns
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

TMR pattern application

Option#1: Extension/refinement of provided pattern template
Þ Direct application of AADL extends/refine mechanisms

But implies the system architecture matches the pattern
• Not applicable if one want dissimilar input modules
• Not applicable if voting is a thread of a larger software process

(e.g. breaking of the hierarchy).

18
Definition of Safety Design Patterns
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

TMR pattern application

Option#2: Consider Safety pattern as “dual-layered patterns”
• Architectural patterns: roles, and data flows
• Verification plan patterns: abstract verification objectives
An instance of the pattern refines both layers to match a specific problem

TMRAADL TMRInstance/AADL

TMRALISA TMRInstance/ALISA

<<refines>>

<<refines>>

<<verifies>> <<verifies>>

19
Definition of Safety Design Patterns
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Conclusion

Safety & security patterns form the foundation for rigorous safety-critical engineering

• Many patterns exist, but no reusable library of patterns

• Limit applicability, error-prone in complex design

Contributions

• Apply AADL and AADL extensions (AGREE, ALISA, AWAS) propose a systematic
definition of safety patterns: goals, requirements, verification methods and AADL abstract
models and

• a process to apply patterns to specific architecture

This library will be integrated in a future release of OSATE.

