
Ad Hoc Data:
An Opportunity for

Domain-Specific Languages

Kathleen Fisher
AT&T Labs Research

Joint work with Anne Rogers and Bob Gruber

April 2004 2

Abundance of valuable ad hoc data
• Call-detail records (fixed-width binary records)

– Are these calls typical for this customer?
– Are these two numbers owned by the same person?

• Provisioning data (per-order ASCII event sequences)
– How long does supplier X take to fulfill orders?
– How many orders sent to supplier X end up being fulfilled?

• Billing system audits (thousands of Cobol data files)
– Are we paying appropriate taxes in all jurisdictions?

• Internet data (variable-width bin. packets, ASCII messages)
– Can this packet cause a buffer overflow?

April 2004 3

Technical challenges

• Data analysts vary widely in programming ability.

• Data arrives “as is.”
– Format determined by data source, not consumers.
– Documentation is often out-of-date or nonexistent.
– Some percentage of data is “buggy.”

• Often data sources have high volume.
– Data may not fit into main memory.
– Data may contain large number of records and “entities of interest.”
– Processing must detect relevant errors and respond in application-

specific ways.

April 2004 4

Why might a language help?

• Languages provide very expressive ways of specifying
what to do with data, e.g., SQL, XQuery.

• By providing infrastructure, data-processing languages
– Enable a broader class of people to manipulate data effectively.
– Shift focus from “How can I compute the information I want?” to

“What information do I want?”
– Shorten programs: easier to write, read, maintain, and reason about.
– Facilitate error detection.

• Declarative data-specification languages enable generation
of a wide variety of tools for manipulating data.

April 2004 5

Overview

• Introduction

• Thesis: domain-specific languages facilitate data processing.
– Hancock: A domain-specific data-processing language for consuming

streams of transaction records to maintain customer signatures.
– PADS: A declarative data-specification language for describing

physical data formats.

• Conclusions

April 2004 6

Hancock: Support for whole data analysis

Individualized analysis: Signatures
• Anomaly detection: fraud, access arbitrage, etc.
• Classification problems: target marketing, biz/res, etc.

Technical challenge:
• Massive data sets and real-time queries ⇒
 Hard I/O and storage requirements ⇒
 Complex programs (hard to write, read, and maintain).

Solution:
• A system that reduces the complexity of signature programs.

April 2004 7

Processing transactions

Transaction Data
Data

Warehouse

Hancock

Signature
Database

April 2004 8

Evolution of fraud detection

Country-based thresholds:
• Aggregate calls in 1/4/24 hour windows.
• Compare aggregates to fixed thresholds.
• Exclude common false positives.

International signatures:
• Signature is an evolving profile.
• Match calls against the customer’s and known fraud
signatures.

Domestic signatures?
• Much larger scale…

April 2004 9

Problem scale

April 2004 10

Computational issues

Efficiently managing communications-scale data requires
substantial programming expertise.

Locality, locality, locality!

April 2004 11

Hancock

• Identified abstractions for processing large data streams.
– Iterated design, meeting with data analysts to get feedback, buy-in.
– “Wow, you can talk about the things that matter!”

• Embodied these abstractions in Hancock, a C-based
domain-specific programming language.
– Embedding avoided reinventing the wheel, fit user’s comfort zone.

• Built experimental and production signatures using a
number of different data streams.
– All AT&T signature programs are now written in Hancock.

April 2004 12

Abstraction overview

Maps. The collection
of customer signatures.

Streams. The transactional
data to be consumed “daily.”

Iterate statement. How
to combine today’s data
with historic signatures
and other data.

Views. The information to
store for each “customer.”

April 2004 13

Sample Hancock code

Question: Is this calling behavior normal for this number?
Approach: Compute evolving signature for each number to
capture normal behavior.

iterate
over calls
filteredby isInternational
sortedby origin
withevents detectCalls

{
event line_begin(pn_t pn){ numToday = 0; }
event call(callRec_t c) { numToday++; }
event line_end(pn_t pn) {

numCalls<:pn:> = 0.8 * numCalls<:pn:>
+ 0.2 * numToday;

}
}

April 2004 14

Concrete results

April 2004 15

Communities of Interest

Question: Are two numbers owned by the same person?
Approach: Compare calling circles:

• Core number
• Inbound calls
• Outbound calls

April 2004 16

Hancock summary

• Hancock provides infrastructure for signature programs.
– Language model reifies abstractions described by analysts.
– Data analysts can easily write efficient signature programs.
– Programs highlight per-customer computation.
– Program brevity makes them easy to write, read, maintain, and reason

about.

• Embedding Hancock in C
– Avoided having to design an entire language from scratch.
– Worked within comfort zone of users.

• Paper: March 2004 issue of TOPLAS

April 2004 17

Overview

• Introduction

• Thesis: domain-specific languages facilitate data processing.
– Hancock: A domain-specific data-processing language for

consuming streams of transaction records to maintain customer
signatures.

– PADS: A declarative data-specification language for describing
physical data formats.

• Conclusions

April 2004 18

PADS System (In Progress)

One person writes declarative description of data source:
– Physical format information
– Semantic constraints

Many people use description and generated library.

• Description serves as maintainable documentation.

• Semantic constraints allow library to detect data errors.

• Bonus: From declarative specification, we can generate
(many) auxiliary tools.

April 2004 19

PADS applications

• Facilitating Hancock stream descriptions

• Helping statisticians analyze telecom provisioning data
– Replacing brittle awk/perl scripts

• Auditing billing systems
– Automatically converting Cobol data

• Analyzing internet packets for conformance to specification

• Loading data into database/stream management systems?

April 2004 20

PADS architecture

Application-specific
customizations

Generated
library

PADS
Library

User Code

Application

PADS
Compiler

PADS
description

April 2004 21

PADS language

• Can describe ASCII, EBCDIC (Cobol) , binary, and mixed data
formats.

• Type-based model: each type indicates how to process
associated data.
– Provides rich and extensible set of base types.

• Pa_int8, Pa_uint8, Pb_int8, Pb_uint8, Pint8, Puint8
• Pstring(:term-char:), Pstring_FW(:size:),
Pstring_ME(:reg_exp:)

– Supports user-defined compound types to describe data source structure:
– Pstruct, Parray, Punion, Ptypedef, Penum
– Allows arbitrary boolean constraint expressions to describe expected

properties of data.

April 2004 22

Simple example: CLF web log

• Common Log Format from Web Protocols and Practice.

• Fields:
– IP address of remote host
– Remote identity (usually ‘-’ to indicate name not collected)
– Authenticated user (usually ‘-’ to indicate name not collected)
– Time associated with request
– Request (request method, request-uri, and protocol version)
– Response code
– Content length

207.136.97.50 - - [15/Oct/1997:18:46:51 -0700] "GET /turkey/amnty1.gif HTTP/1.0" 200 3013

April 2004 23

Example: Parray
Parray host {
Puint8[4]: Psep(‘.’) && Pterm(‘ ’);

};

207.136.97.50 - - [15/Oct/1997:18:46:51 -0700] "GET /turkey/amnty1.gif HTTP/1.0" 200 3013

Array declarations allow the user to specify:
• Size (fixed, lower-bounded, upper-bounded, unbounded)
• Psep, Pterm, and termination predicates
• Constraints over sequence of array elements

Array terminates upon exhausting EOF/EOR, reaching terminator,
reaching maximum size, or satisfying termination predicate.

April 2004 24

Example: Pstruct
Precord Pstruct http_weblog {

host client; /- Client requesting service
' '; auth_id remoteID; /- Remote identity
' '; auth_id auth; /- Name of authenticated user
“ [”; Pdate(:']':) date; /- Timestamp of request
“] ”; http_request request; /- Request
' '; Puint16_FW(:3:) response; /- 3-digit response code
' '; Puint32 contentLength; /- Bytes in response

};

207.136.97.50 - - [15/Oct/1997:18:46:51 -0700] "GET /turkey/amnty1.gif HTTP/1.0" 200 3013

April 2004 25

PADS compiler

• Converts description to C header and implementation files.

• For each built-in/user-defined type:
– Functions (read, write, initialize, cleanup, copy, …)
– In-memory representation
– Mask (check constraints, set representation, suppress printing)
– Parse descriptor

• Reading invariant: If mask is check and set and parse
descriptor reports no errors, then in-memory representation
satisfies all constraints in data description.

April 2004 26

Example: Reading CLF web log

PDC_t *pdc;
http_weblog entry;
http_weblog_m mask;
http_weblog_pd pd;
P_open(&pdc, 0 /* PADS disc */, 0 /* PADS IO disc */);
P_IO_fopen(pdc, fileName);
... call init functions ...
http_weblog_mask(&mask, PCheck & PSet);
while (!P_IO_at_EOF(pdc)) {

http_weblog_read(pdc, &mask, &pd, &entry);
if (pd.nerr != 0) { ... Error handling ... }
... Process/query entry ...

};
... call cleanup functions ...
P_IO_fclose(pdc);
P_close(pdc);

April 2004 27

PADS: Value-added tools

• Accumulators collect “bird’s eye” view of data source (per field
percentage of errors, histogram of “Top N”)
– Billing audit: which feeds are interesting/changing/buggy?
– CLF data: book specification is wrong.

• Interface with Galax implementation of XQuery
– From PADS description, generate instance of Galax data API.
– Provisioning data: questions expressible as XQueries (without translating

data into XML).

• Canonical translation into XML, including XSchema.

• Web-based data selection programs/general data browser.

• In-memory representation “completion” functions.

• Sanitized test data generation.

April 2004 28

PADS: To do list

• Finalize initial release: documentation and release process.

• Conduct careful performance study and tune library
accordingly.

• Leverage semantic information to build value-added tools.

• Allow library generation to be customized with application-
specific information:
– Repair errors, ignore fields, customize in-memory representation,

etc.

April 2004 29

Related work

• ASN.1, ASDL
– Describe logical representation, generate physical.

• DataScript [Back: CGSE 2002] &
PacketTypes [McCann & Chandra: SIGCOMM 2000]
– Binary only
– Stop on first error

• Database vendors have tools to load specific formats.

• YACC, etc.

• Hand-written parsers in C, perl, etc.

April 2004 30

PADS summary
• Data analysts vary widely in programming ability.

– PADS supports declarative programming, automatic tool generation.

• Data arrives “as is.”
– Format determined by data source, not consumers.

• PADS language allows consumers to describe data as it is.
– Documentation is often out-of-date or nonexistent.

• PADS description can serve as documentation for data source.
– Some percentage of data is “buggy.”

• Constraints allow consumers to express checked expectations about data.

• Often streams have high volume.
– Data may not fit into main memory.

• Multiple entry-points allow different levels of granularity.
– Processing must detect relevant errors (without necessarily halting program)

• Masks specify relevancy; returned descriptors characterize errors.

April 2004 31

Domain Specific Languages

• Facilitate data processing

• Domain-specific abstractions
– Enable broader class of users to manipulate data.
– Shorten and simplify user code, improving maintainability.
– Facilitate error detection.
– Enable many useful tools.

• Different paradigms useful
– Procedural vs. declarative
– Application vs. library

• Embedded DSLs
– Allow fast prototyping.
– Avoid duplicating existing functionality.
– May impede analysis longer term.
– Can facilitate acceptance by users.

April 2004 32

Users are key

• Involve users from the beginning.
– They understand the domain, its constraints, and what functionality

they require.
– Invaluable input when evaluating the many trade-offs that arise in

designing a language.
– Language will only be successful if they use it, so getting them to

“buy-in” early is crucial.

April 2004 33

Summary

• Hancock (Available online from www.research.att.com/projects/hancock):
– Domain-specific language for processing arbitrary streams of fixed-

width data.

• PADS (In progress. Some information: www.research.att.com/projects/pads):
– Declarative description of data source, including both layout

information and semantic constraints.
– Compiler generates data-manipulation library.
– In progress: Suite of tools to leverage declarative specification.

http://www.research.att.com/projects/hancock

April 2004 34

Why not use C / Perl / Shell scripts… ?

• Writing hand-coded parsers is time consuming & error prone.

• Reading them a few months later is difficult.

• Maintaining them in the face of even small format changes
can be difficult.

• Programs break in subtle and machine-specific ways
(endien-ness, word-sizes).

• Such programs are often incomplete, particularly with respect
to errors.

April 2004 35

Why not use traditional parsers?

• Specifying a lexer and parser separately can be a barrier.

• Need to handle data-dependent parsing.

• Need more flexible error processing.

• Need support for multiple-entry points.

April 2004 36

Getting PADS

PADS will be available shortly for download with a non-
commercial-use license.

http://www.research.att.com/projects/pads

April 2004 37

Example: arrays and unions

Parray nIP {
Puint8 [4] : Psep('.');

};

Parray sIP {
Pstring_SE(:"[.]":) [] : Psep('.') && Pterm ('.');

}

Punion host {
nIP resolved; /- 135.207.23.32
sIP symbolic; /- www.research.att.com

};

Punion auth_id {
Pchar unauthorized : unauthorized == '-';

/- non-authenticated http session
Pstring(:' ':) id;

/- login supplied during authentication
};

207.136.97.50 - - [15/Oct/1997:18:46:51 -0700] "GET /turkey/amnty1.gif HTTP/1.0" 200 3013

April 2004 38

Generated type declarations
typedef struct {
host client; /* Client requesting service */
auth_id remoteID; /* Remote identity */
…

} http_weblog;

typedef struct {
host_m client;
auth_id_m remoteID;
…

} http_weblog_m;

typedef struct {
int nerr;
int errCode;
PDC_loc loc;
int panic;
host_pd client;
auth_id_pd remoteID;
…;

} http_weblog_pd;

April 2004 39

Generated accumulator representation
(acc)

pstruct http_request {
'\"'; http_method meth; /- Request method
' '; Pstring(:' ':) req_uri; /- Requested uri.
' '; http_version version : check(version, meth);
'\"';

};

typedef struct {
PDC_uint64_acc nerr;
http_method_acc meth;
PDC_string_acc req_uri;
http_version_acc version;

} http_request_acc;

April 2004 40

Generated read function
pstruct http_request {
'\"'; http_method meth; /- Request method
' '; Pstring(:' ':) req_uri; /- Requested uri.
' '; http_version version : check(version, meth);
'\"';

};

PDC_error_t http_request_read(PDC_t *pdc,
http_request_m *m,
http_request_pd *pd,
http_request *rep);

We also generate initialization and cleanup functions for
representations and error descriptors for variable width data.

April 2004 41

Example: Punion

Punion id {
Pchar unavailable : unavailable == '-';
Pstring(:' ':) id;

};

207.136.97.50 - - [15/Oct/1997:18:46:51 -0700] "GET /turkey/amnty1.gif HTTP/1.0" 200 3013

• Union declarations allow the user to describe variations.
• Implementation tries branches in order.
• Stops when it finds a branch whose constraints are all true.
• Switched version branches on supplied tag.

April 2004 42

Advanced features: User constraints

int checkVersion(http_v version, method_t meth) {
if ((version.major == 1) && (version.minor == 0)) return 1;
if ((meth == LINK) || (meth == UNLINK)) return 0;
return 1;

}

Pstruct http_request {
'\"'; method_t meth; /- Request method
' '; Pstring(:' ':) req_uri; /- Requested uri.
' '; http_v version : checkVersion(version, meth);

/- HTTP version number of request
'\"';

};

207.136.97.50 - - [15/Oct/1997:18:46:51 -0700] "GET /turkey/amnty1.gif HTTP/1.0" 200 3013

April 2004 43

Advanced features: Sharing information

• “Early” data often affects parsing of later data:
– Lengths of sequences
– Branches of switched unions

• To accommodate this usage, we allow PADS types to be
parameterized:
Punion packets_t (: Puint8 which, Puint8 length:) {
Pswitch (which) {
Pcase 1: header_t header;
Pcase 2: body_t body;
Pcase 3: trailer_t trailer;
Pdefault: Pstring_FW(: length :) unknown;

};

April 2004 44

Generated representation

Pstruct http_request {
'\"'; http_method meth; /- Request method
' '; Pstring(:' ':) req_uri; /- Requested uri.
' '; http_version version : check(version, meth);
'\"';

};

typedef struct {
http_method meth; /* Request method */
Pstring req_uri; /* Requested uri */
http_version version; /* check(version, meth) */

} http_request;

April 2004 45

Generated mask (m)

Pstruct http_request {
'\"'; http_method meth; /- Request method
' '; Pstring(:' ':) req_uri; /- Requested uri.
' '; http_version version : check(version, meth);
'\"';

};

typedef struct {
P_base_m structLevel;
http_method_m meth;
P_base_m req_uri; /* Check, Set, Print,… */
http_version_m version;

} http_request_m;

April 2004 46

Generated parse descriptor (pd)

Pstruct http_request {
'\"'; http_method meth; /- Request method
' '; Pstring(:' ':) req_uri; /- Requested uri.
' '; http_version version : check(version, meth);
'\"';

};

typedef struct {
int nerr;
P_errCode_t errCode;
P_loc_t loc;
int panic; /* Structural error */
http_method_pd meth;
P_base_pd req_ uri;
http_version_pd version;

} http_request_pd;

April 2004 47

Expanding our horizons

• Design to this point primarily based on our experiences
with Hancock data streams.

• To get feedback on the expressiveness of our language and
the utility of the generated libraries, we started collecting
other users:
– Data analysts (Chris Volinksy, David Poole)
– Cobol gurus (Andrew Hume, Bethany Robinson, …)
– Internet miner (Trevor Jim)

April 2004 48

Data analysts: The domain

• Data: ASCII files, several gigabytes in size, sequence of
provisioning records, each of which is a sequence of state,
time-stamp pairs.

• Desired application: aggregation queries.
– How many records that go through state 3 end in state 5?
– What is the average length of time spent in state 4?
– …

• Original applications written in brittle awk and perl code.

customer_id | order# | state1 | ts1 | … | staten | tsn

April 2004 49

Data analysts: Lessons learned

• PADS expressive enough to describe data sources.

• PADS descriptions much less brittle than originals.

• Generated code faster than original implementations.

• Support for declarative querying could be a big win, as
analysts can then generate desired aggregates with only
declarative programming.
– Data and desired queries “semi-structured” rather than relational.

April 2004 50

Developing support for declarative
querying

• Wanted to leverage existing query language.

• XQuery, standardized query language for XML, is appropriately
expressive for our queries.

• Modified Galax, open-source implementation of XQuery, to create data
API, allowing Galax to “read” data not in XML format. (Mary
Fernandez, Jérôme Simeon).

• Extended PADSC to generate data API.

• Currently, can run queries over PADS data if data fits in memory.

• Next: extend Galax API and generated library to support streaming
interface.

April 2004 51

Cobol gurus: The domain

• Data: EBCDIC encoded files with Cobol copy-book
descriptions. Thousands of files arriving on daily basis,
hundreds of relevant copy-books, with more formats
arriving regularly.

• Desired application: developing a “bird’s eye” view of
data.

• Original applications: hand-written summary programs on
an ad hoc basis.

April 2004 52

Cobol gurus: Lessons learned

• Wrote a translator that converts from Cobol copy books to
PADSL.
– Added Palternates, which parse a block of data multiple times,

making all parses available in memory.
– Generated description uses Palternates, Parrays,
Pstructs, and Punions.

– Uses parameters to control data-dependent array lengths.
– Successfully translated available copybooks.

• Added accumulators to generated library.
– Aggregate parsed data, including errors.
– Generate reports, providing bird’s eye view.

April 2004 53

Internet miner: The domain

• Data: data formats described by RFCs. Some binary (dns,
for example), some ASCII (http, for example).

• Desired applications: detecting security-related protocol
violations, data mining, semi-automatic generation of
reference implementations.

• Original applications: being developed with PADS.

April 2004 54

Internet miners: Lessons learned

• Constraints are a big win, because they allow semantic conditions to be
checked.

• Parameterization used a lot, particularly to check buffer lengths in
binary formats (dns).

• Additional features needed:
– Predicates over parsed prefixes to express array termination.
– Regular expression literals and user-defined character classes.
– Positional information in constraint language.
– Recursive declarations.
– In-line declarations.

• Developing script to semi-automate translation of RFC EBNF (Trevor
Jim).
– URI spec successfully translated, HTTP close.

	Abundance of valuable ad hoc data
	Technical challenges
	Why might a language help?
	Overview
	Hancock: Support for whole data analysis
	Processing transactions
	Evolution of fraud detection
	Problem scale
	Computational issues
	Hancock
	Abstraction overview
	Sample Hancock code
	Concrete results
	Communities of Interest
	Hancock summary
	Overview
	PADS System (In Progress)
	PADS applications
	PADS architecture
	PADS language
	Simple example: CLF web log
	Example: Parray
	Example: Pstruct
	PADS compiler
	Example: Reading CLF web log
	PADS: Value-added tools
	PADS: To do list
	Related work
	PADS summary
	Domain Specific Languages
	Users are key
	Summary
	Why not use C / Perl / Shell scripts… ?
	Why not use traditional parsers?
	Getting PADS
	Example: arrays and unions
	Generated type declarations
	Generated accumulator representation (acc)
	Generated read function
	Example: Punion
	Advanced features: User constraints
	Advanced features: Sharing information
	Generated representation
	Generated mask (m)
	Generated parse descriptor (pd)
	Expanding our horizons
	Data analysts: The domain
	Data analysts: Lessons learned
	Developing support for declarative querying
	Cobol gurus: The domain
	Cobol gurus: Lessons learned
	Internet miner: The domain
	Internet miners: Lessons learned

