% I DATA

Adapting to demand

sel4 proofs and engineering practice

Matthew Brecknell | Sep 2020

o 1
The impact of history

Microsoft Windows: How is this possible?

1981: MS-DOS What were the challenges?
1985: Windows 1.0
1993: Windows NT 3.1

2014: Windows 10

@c
Today’s talk

- Current challenges in selL4 proof engineering
- History and its impact
- What we’re doing with those challenges

7~
15" |

N~

What is selL4?

security proofs

i

specification

selL4 @

Hardware implementation

7~
15" |

N~

What is selL4?

security proofs

i

specification

selL4 @

Hardware implementation

7~
15" |

N~

What is selL4?

security proofs

i

specification

selL4 @

Hardware implementation

& | DATAl

Current challenges in selL4 verification

Research and development
- Multicore
- Time

- Integrity: mixed-criticality real time

- Confidentiality: timing channels

Engineering practice
- Achieving agility
- Matrix problem

ARM
x86
RISC-V

32-bit
64-bit

virt?

oJele;

& | DATAl

The impact of history (selL4 edition)

- Our proof architecture reflects our initial prototype.
- Artefacts become overheads.

- In the beginning, we had to limit scope.
- The priority was getting something done.

- We knew less then than we know now.

& | DATAl

History: prototype

Haskell
—
prototype
I
I
4
Ckernel [———»

Abstract
specification

I

Intermediate
specification

I

-

C
specification

Invariants

Refinement

& | DATAl

History: prototype

Haskell
—
prototype
I
I
\ 4
Ckernel [——

Abstract
specification

I

Intermediate
specification

I

-

C
specification

Invariants

Refinement

& | DATAl

History: prototype

Haskell
—
prototype
I
I
4
Ckernel [———»

Abstract
specification

!

Intermediate
specification

I

-

C
specification

Invariants

Refinement

& | DATAl

History: prototype

Haskell
—
prototype
I
I
Y
Ckernel [———»

Abstract
specification

!

Intermediate
specification

I

-

C
specification

Invariants

Refinement

& | DATAl

History: prototype

Haskell
—
prototype
I
I
4
Ckernel [———»

Abstract
specification

!

Intermediate
specification

I

-

C
specification

Invariants

Refinement

& | DATAl

History: prototype

Haskell
—
prototype
I
I
4
Ckernel [———»

Abstract
specification

!

Intermediate
specification

I

-

C
specification

Invariants

Refinement

& | DATAl

History: prototype

Haskell
—
prototype
I
I
4
Ckernel [———»

Abstract
specification

I

Intermediate
specification

I

-

C
specification

Invariants

Refinement

& | DATAl

History: prototype

Haskell
—
prototype
I
I
4
Ckernel ———»

Abstract
specification

I

Intermediate
specification

I

-

C
specification

Invariants

Refinement

& | DATAl

History: prototype

Haskell
—
prototype
I
I
4
Ckernel ——»

Abstract
specification

!

Intermediate
specification

!

-

C
specification

Invariants

Refinement

& | DATAl

History: prototype

Haskell
—
prototype
I
I
4
Ckernel [———»

Abstract
specification

I

Intermediate
specification

I

-

C
specification

Invariants

Refinement

et
History: prototype

We still have the Haskell!
- But we don’t run it any more.
- Primarily a specification generator.

The upper refinement should be just a data refinement.
- But we spend time on artefacts of the prototype.

et
History: prototype

What to do?
- Get rid of the Haskell! Eventually.
- Increase sharing between the abstract and intermediate
specifications.

% T
a
History: scope

Originally:
- One instruction set architecture (ARMv7).
- One mode (32-bit).
- One platform configuration.
- One core.

% | DATAl

History: architecture split

Haskell prototype
C kernel

Abstract specification ”
Property definitions

Conventional separation of generic
and arch-specific aspects
(even though only one configuration)

Virtual memory structures — arch
Everything else (threads, IPC) — generic

What about the proofs?

~

| DATA
bl

N~

History: architecture split

Proofs were very interdependent.
arch
T
st Challenge: verify more configurations
~rch (hypervisor, x86-64, RISC-V)
T
generic

CSpace_Al (old)

~

| DATA
b1

N~

History: architecture split

import ../CSpace_Al

arch arch

T T
generic | generic

!

arch arch

T !
generic >| generic

CSpace_Al (old)

CSpace_Al (new)

ARM/ArchCSpace_Al

& | DATAl

History: architecture split

import ../CSpace_Al

arch assumearch ________________ arch
P P
generic | generic
_______________ A !
arch assume arch arch
r | P
generic >| generic

CSpace_Al (old) CSpace_Al (new) ARM/ArchCSpace_Al

& | DATAl

History: architecture split

import ../CSpace_Al

arch assumearch ________________ arch
r | | | L
generic | generic interpret generic
_______________ o I

arch assume arch arch
r | | | L
generic ~| generic —E_i_r_wft_E_r_p_r_gt_ generic |

CSpace_Al (old) CSpace_Al (new) ARM/ArchCSpace_Al

% | DATAl

History: architecture split

+ Lots of shared generic invariant proofs.
+ Explicit statements of what we assume about architectures.
- Even though we didn’t look for nicer abstractions.

- We need to check the shared proofs for each architecture.
- Limited support for fine-grained configurability.

e
2™

N~

Configurability wish list

Easy
- Addresses of kernel base and global structures.

More challenging
- Word size: affects generic kernel structures!
- Feature switches: virtualisation, page table structures.

Impossible
- Mixed-criticality, multi-core.

& | DATAl

Page table abstraction

Almost all arch-specific proofs are about virtual memory.
- And all VM proofs are arch-specific!

Wanted: generic theory of virtual memory mappings.
- Specialisations to ARM, x86, RISC-V.

& | DATAl

Page table abstraction: progress

ARM
- lrregular page table structure.

RISC-V
- Perfectly regular page table structure.

RISC-V showed us how to reimagine our treatment of virtual

memory mappings.
- In both code and proofs.

& | DATAl

Page table abstraction: progress

RISC-V page table walk:
- Single recursive function.
- Not even monadic!
- Requires only a “projection” of all page table entries in the heap.
- Used in both the specification and in properties to be proved.

18
Page table abstraction: future

Wanted: other architectures:
+ Yes!
+ “Just” need to parameterise by a page table entry encoding.
+ Proofs about generic page table walks can be shared.
+ Makes it easier to solves problems with the architecture split.
- But doesn’t solve them directly.
+ Incremental: x86, then ARM.

% | DATAl

Page table abstraction: future

How this helps with the architecture split:
+ Narrower and clearer interface between arch-specific and
generic proofs.
+ Fewer arch-specific proofs.
- Still need to recheck all the proofs for each configuration.
+ But a clearer path to truly generic proofs.

e
2™

N~

The end goal

+ One specification, parameterised by:
- Page table structure.
- Feature options (virtualisation).
- Data refinement level.
+ One proof of abstract invariants.
+ One proof of the first data refinement.
- We'll see about the C refinement.

%lﬁm
=
Conclusion

Past decisions:

+ Were right at the time.

- Have different consequences in the present.
+ But we can adapt.

We’'ve made it to the point where we can have mundane software
engineering concerns in formal verification!

