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The impact of history

Microsoft Windows:
- 1981: MS-DOS
- 1985: Windows 1.0
- 1993: Windows NT 3.1
- …
- 2014: Windows 10

How is this possible?
What were the challenges?



Today’s talk

- Current challenges in seL4 proof engineering
- History and its impact
- What we’re doing with those challenges
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Current challenges in seL4 verification

Research and development
- Multicore
- Time

- Integrity: mixed-criticality real time
- Confidentiality: timing channels

Engineering practice
- Achieving agility
- Matrix problem

ARM
x86

RISC-V

32-bit
64-bit

virt?



The impact of history (seL4 edition)

- Our proof architecture reflects our initial prototype.
- Artefacts become overheads.

- In the beginning, we had to limit scope.
- The priority was getting something done.

- We knew less then than we know now.
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History: prototype

We still have the Haskell!
- But we don’t run it any more.
- Primarily a specification generator.

The upper refinement should be just a data refinement.
- But we spend time on artefacts of the prototype.



History: prototype

What to do?
- Get rid of the Haskell! Eventually.
- Increase sharing between the abstract and intermediate 

specifications.



History: scope

Originally:
- One instruction set architecture (ARMv7).
- One mode (32-bit).
- One platform configuration.
- One core.



History: architecture split

Haskell prototype
C kernel
Abstract  specification
Property definitions

Conventional separation of generic  
and arch-specific aspects
(even though only one configuration)

Virtual memory structures → arch
Everything else (threads, IPC)  → generic

What  about the proofs?



History: architecture split

CSpace_AI (old)

arch

generic

arch

generic

Proofs were very interdependent.

Challenge: verify more configurations 
(hypervisor, x86-64, RISC-V)
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History: architecture split

import ../CSpace_AI

ARM/ArchCSpace_AICSpace_AI (new)CSpace_AI (old)

arch
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History: architecture split

+ Lots of shared generic invariant proofs.
+ Explicit statements of what we assume about architectures.

- Even though we didn’t look for nicer abstractions.

- We need to check the shared proofs for each architecture.
- Limited support for fine-grained configurability.



Configurability wish list

Easy
- Addresses of kernel base and global structures.

More challenging
- Word size: affects generic kernel structures!
- Feature switches: virtualisation, page table structures.

Impossible
- Mixed-criticality, multi-core.



Page table abstraction

Almost all arch-specific proofs are about virtual memory.
- And all VM proofs are arch-specific!

Wanted: generic theory of virtual memory mappings.
- Specialisations to ARM, x86, RISC-V.



Page table abstraction: progress

ARM
- Irregular page table structure.

RISC-V
- Perfectly regular page table structure.

RISC-V showed us how to reimagine our treatment of virtual 
memory mappings.

- In both code and proofs.



Page table abstraction: progress

RISC-V page table walk:
- Single recursive function.
- Not even monadic!
- Requires only a “projection” of all page table entries in the heap.
- Used in both the specification and in properties to be proved.



Page table abstraction: future

Wanted: other architectures:
+ Yes!
+ “Just” need to parameterise by a page table entry encoding.
+ Proofs about generic page table walks can be shared.
+ Makes it easier to solves problems with the architecture split.

- But doesn’t solve them directly.
+ Incremental: x86, then ARM.



Page table abstraction: future

How this helps with the architecture split:
+ Narrower and clearer interface between arch-specific and 

generic proofs.
+ Fewer arch-specific proofs.
- Still need to recheck all the proofs for each configuration.
+ But a clearer path to truly generic proofs.



The end goal

+ One specification, parameterised by:
- Page table structure.
- Feature options (virtualisation).
- Data refinement level.

+ One proof of abstract invariants.
+ One proof of the first data refinement.
- We’ll see about the C refinement.



Conclusion

Past decisions:
+ Were right at the time.
- Have different consequences in the present.
+ But we can adapt.

We’ve made it to the point where we can have mundane software 
engineering concerns in formal verification!


