Advanced Infosec Machine

!'_ Model and DSLs

John Launchbury
Thomas Nordin

Oregon Graduate Institute

i Overview of this talk

= AIM overview
= Introduction to OGI’s AIM project

= Modeling permutations
= Permutation building blocks
= Building complex permutations from parts

= Modeling Sbox functions
= Summary

= Motorola AIM
(Advanced INFOSEC Machine)

On-board encryption engines

MASK technology
(Mathematically Assured Separation Kernel)

Physically tamper-proof

IFH

www.motorola.com/GSS/SSTG/ISSPD/INFOSEC/Embedded/AIM/

(Simplified)

i PCE Internal Structure

Memory
Access

Registers

Execution components
= APFU (Permutation Function Unit)
« 16 predefined permutations
= NLU (Non-Linear Unit)
= 16 one-bit memories
=« Independently addressable

= LFU (Linear Function Unit)
= XOR unit

= ALU

PCE microcode

= Each component’s in-parallel operation
specified each cycle

= Visible pipeline delays when accessing
registers

= Memory accessed via external
requests

i OGl’s Project

= Semantic analysis of AIM microcode

= How do the components of the AIM
crypto-processor behave?

= Does a piece of PCE microcode meet its
specification? Where does it go wrong?

= Automatic generation of AIM microcode

128 i1nput bits

APFU

128 output bits

= In the process we have built the core of some

potentially useful tools

= Generating configuration files for
permutation and Sbox specifications <:

= AIM microcode single stepper

* Permutation Tool

s Permutations are
described naturally

= Permutations can
be explored to
check they behave
as predicted

= Permutations can
be used to
generate APFU
configuration files

(@

Permutation

Library

g ind

N~

Haskell
N

o8 | E

i Permutations

= Lists of numbers
= Numbered left to right
= Beginning at 1

= Examples

= [4,1,2,3]
« [2,4,2,2,4,3,6]
« [8,1,7,4,1,5,3]

= Permutations can be any
size
= 16 or 32 bits is common

1 2 3 4

Aoy

4 1 2 3

1 2 3 4 5 6

PSS

2 4 2 2 4 3 6

1 2 3 4 5 6 7 8

SR

8 1 7 4 1 5 3

i List definitions

= At their simplest, permutations can be defined by just
giving a list of bit positions

= Examples
deslP =
[58,50,42,34,26,18,10,

desP = 60,52.44.36,28,20.12,

[16, 7,20,21,29,12,28,17, 62.54.46.38,30,22.14,
1,15,23,26, 5,18,31,10,

2 8len 143027 39 64.56,48,40,32,24.16,
19,13,30, 6,22,11, 4,25] 57,49,41,33,25,17, 9,
59.51,43,35,27,19,11,
61,53,45,37,29,21,13,
63,55,47,39,31,23,15,

OO wWkFrkr oo A~DN

* AIM Input Permutations

= Input buffer permutations
= Each selects the

appropriate Permutation 128 input bits
Unit input bits APFU

= Maps down to 32 output bits 128 output bits
ib2 = [33..64]

ib3 = [65..96]

ib4 = [97..128]

i APFU definition

= APFU specification Is a record containing
= Permutation number
= Four 32-bit permutations p1, p2, p3, p4

= Example

apfu5 = APFU {perm = 5,
pl = 1b4 "iInto desP,
p2 = 1b2,
p3 = 1b3,
p4 = i1bl}

“Lego Block” Permutations

s Permutations are “values”

= Like integers, complex numbers, polynomials,
matrices etc.

= Don’t think about storage
= Think about operators

= Question

= What operators are needed to produce new
permutations from old?

“Into

= Pipe the output of one
permutation into the input of
another

= Calculate the resulting composite
permutation

= Example
1b4 " 1Into” desP

[112,103,116,117,125,108,124,113,
97,111,119,122,101,114,127,106,
98,104,120,110,128,123, 99,105,

115,109,126,102,118,107,100,121]

1 2 3 4 5 6 7 8

8 2 6 2 2 4 2

[2,4,2,2,4,3,6]
“into”

[8,1,7,4,1,5,3]

[8.2,6,2,2,4,2]

S

— §

1 2 3 4 5 6 7 8

+ 4 2 4 8 2

1 2 3 4 5 6 7 8

= Joins two permutations

. . 7 3 1 6
together, side by side
= Each permutation [2.4.8,2] ++ [7,3,1,6]

draws from the same = [2,4.8,2,7,3,1,6]

iInput bits 1 2 3 4 5 6 7 8

= Obtained simply by
appending the two
lists together

= Example
ib4 ++ 1b3
= [97, 98, 99,100,101,102,103,104,105,106,107,108,109,110,111,112,
113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, /5, /6, /7, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96]

“select”

= Selects output bits from a
permutation

= Requires a list of contiguous
output bits

= Example
(1b3 ++ 1b2) “select [17..64]
[81,82,83,84,85,86,87,88,
89,90,91,92,93,94,95,96,
33,34,35,36,37,38,39,40,
41,42 ,43,44,45,46,47,48,
49,50,51,52,53,54,55,56,
57,58,59,60,61,62,63,64]

1 2 3 4 5 6 7 8

7 4 1 5

[8,1,7,4,1,5,3]
“select”

[3--6]

[7.4,1,5]

<<

= Left rotation of a
permutation

= Example
[5..32] <<< 2
[7, 8, 9,10,11,12,13,14,
15,16,17,18,19,20,21,22,
23,24,25,26,27,28,29,30,
31,32,5,6]

= Right rotation (>>>) Is the
converse

1 2 3 4 5 6 7 8

/7 4 1 5 3 8 1

[8,1,7,4,1,5,3] <<< 2

[7,4,1,5,3,8,1]

Inverse

= Invert a permutation

= Example _
inverse deslp inverse [8,1,7,4,1,5,3]
= [40,8,48,16,56,24,64,32, [2.1.7.4.6,1,3.1]

39,7,47,15,55,23,63,31,
38,6,46,14,54,22,62,30,
37,5,45,13,53,21,61,29,
36,4,44,12,52,20,60,28,
35,3,43,11,51,19,59,27,
34,2,42,10,50,18,58,26,
33,1,41, 9,49,17,57,25]

= If pis a true permutation (no duplication, no losses) then
= INnverse p into p = 1d = p "Into iInverse p

pad

= Pad the output of a
permutation to make its
output the desired width

= Example
pad 32 ([5..32] <<< 1)
-r1,1,1,1,6,7,8,09,
10,11,12,13,14,15,16,17,
18,19,20,21,22,23,24,25,
26,27,28,29,30,31,32, 5]

Rl

pad 8 [8,1,7,4,1,5]

/

[1,1,8,1,7,4,1,5]

= NB. It is an error to pad less than the size of the

permutation
= pad 4 [1,2,3,4,5] -->

Error

Example Definitions

apful = APFU {perm = 1,
pl = pad 32 (expansion “select [1..16]),
p2 = expansion “select [17..48],
p3 = 1bl,
p4 = initialPerm “select [33..64]}
where
initialPerm = (ib3 ++ 1b4) "into deslP
expansion = (initialPerm “select™ [33..64]) into desE

dest = [32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9
, 8, 9,10,11,12,13,12,13,14,15,16,17
,16,17,18,19,20,21,20,21,22,23,24,25
,24,25,26,27,28,29,28,29,30,31,32, 1]

“Value” of APFU1

DES> apful

APFU{perm=1,

p1-[1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,
71,121,113,105,97,89,97,89,81,73,65,123,65,123,115,107],

p2=[99,91,99,91,83,75,67,125,67,125,117,109,101,93,101,93,
85,77,69,127,69,127,119,111,103,95,103,95,87,79,71,121],

p3=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32],

p4=[121,113,105,97,89,81,73,65,123,115,107,99,91,83,75,67,
125,117,109,101,93,85,77,69,127,119,111,103,95,87,79,71]

i Displaying APFUs

Main> viewCode apfub

PERMS5:

P1_31(1B4_16)]|
P1_30(1B4_25)]|
P1 29(1B4_12)]|
P1 28(1B4_11)]
P1 27(1B4_3)|
P1_26(1B4_20)]|
P1_25(1B4_4)|
P1_24(1B4_15)]|
P1_23(1B4_31)]|
P1_22(1B4_17)]
P1 21(1B4_9)|
P1_20(1B4_6)|

P1_2(1B4_21)|
P1_1(1B4_28)|
P1_0(1B4_7)|

P2 _31(1B2_31)]
P2_30(1B2_30)]|
P2 _29(1B2_29)]|
P2 _28(1B2_28)]|
P2 27(1B2_27)]
P2 _26(1B2_26)]|
P2 _25(1B2_25)]|
P2 24(1B2_24)]|
P2 _23(1B2_23)]
P2 _22(1B2_22)]
P2 21(1B2_21)]
P2 _20(1B2_20)]|

P2 2(1B2_2)]
P2 1(1B2_1)]
P2_0(1B2_0)]

P3_31(1B3_31)]
P3_30(1B3_30)]
P3_29(1B3_29)]|
P3_28(1B3_28)]|
P3_27(1B3_27)]
P3_26(1B3_26)]|
P3_25(1B3_25)]|
P3_24(1B3_24)]
P3_23(1B3_23)]
P3_22(1B3_22)]|
P3_21(1B3_21)]
P3_20(1B3_20)]|

P3_2(1B3_2)|
P3_1(1B3_1)]|
P3_0(1B3_0)|

P4 31(1B1_31)|
P4_30(1B1_30)]|
P4 _29(1B1_29)|
P4 _28(1B1_28)|
P4 27(1B1_27)]|
P4 _26(1B1_26)|
P4 _25(1B1_25)|
P4 24(1B1_24) |
P4 _23(1B1_23)|
P4 22(1B1_22)]
P4 21(1B1_21)]
P4_20(1B1_20)]|

P4 2(1B1_2)]|
P4 1(1B1_1)]|
P4 _0(1B1_0);

i S-boxes

= Every crypto-algorithm needs non-linear
components

= Multiplication (RC6)

= Galois field inversion (Rijndael) E—

= Arbitrary functions, S-boxes —
= DES has 8 separate S-boxes

= Each 6-bit in, 4-bit out

i Implementing S-boxes

Non-Linear Unit
= NLU designed 2 T
for S-box =
functionality £ M
= Lookup tables allow ~ i
arbitrary functions BEE T T W T T T T T T T
= Sixteen 256x1 tables 16 output
= Each table independently addressable
= Permutations used for arranging address lines)
single
= Examples 6->4 }
= 256 X 16-bit words S-box

= 512 bytes, dual read ports

* Modeling S-boxes

= Underlying model
= Sequence of permutation/bit-list pairs

L | L | L |

= Component permutations will be joined to build the final addressing
permutation

= Component bit-lists will be joined to construct the values of each look-up
table

= What are the compositional operations?

= Primitive construction of a single S-box from a list of values

= Joining S-boxes together side-by-side, or vertically

= Rearranging addressing lines

= Computing new S-boxes from old

i Operators

= Build a primitive S-box given an addressing permutation, the number
of output bits, and a table of data
sbox :: Perm -> Int -> [Integer] -> Sbox

= Connect multiple S-boxes together vertically, given an addressing
permutation which distinguishes which S-box is required
pack :-: Perm -> [Sbox] -> Sbox

= Connect multiple S-boxes together horizontally
extend :: [Sbox] -> Sbox

= Pre-compose a new addressing permutation with the S-box
permutations
InNtoS :-: Perm -> Sbox -> Sbox

i Example definitions

sboxl = pack [1,6] [sboxla, sboxlb, sboxlc, sboxld]

sboxla

sbox1b

sboxlc

sbox1d

sbox [2,3,4,5] 4
[14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7]
sbox [2,3,4,5] 4
[0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8]
sbox [2,3,4,5] 4
[4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0]
sbox [2,3,4,5] 4
[15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13]

i Introducing a little abstraction

desBox xss = pack [1,6] (map (sbox [2,3,4,5] 4) xss)

sbox4 = desBox
(17,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15]
,[13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9]
,[10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4]
,[3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14]

1

i Packing the table

layerl

layer?2

al IDES

extend [

[9..14] °
[17..22] °
[25..30] °

extend [

[9..14] °
[17..22] °
[25..30] °

pack [7] [layerl,

sbox1,
Into™ sbox2,
Into” sbox3,
into sbox4]

sbox5,
Into~ sbox6,
Into sbox7,
into sbox8]

layer2]

i Generating AIM configurations

= All the information can be ;L‘F"Z"nggﬁ’_‘ al1DES

calculated for the AIM FO(Oxefa7) |
configuration file F1(0x410d) |
= Format requires rearranging NLU F2(0xd8%e) |
data as 16-bit words F3(0xlee3d) |
F4(0x2660) |

= Use the viewSbox command F124(0xa6e3) |

F125(0x4025) |

F126(0x5836) |

F127(0x3dcb);

i Laws

s Formal basis means that we should look for
natural algebraic laws

= Helps provide understanding of the operators

= Pre-composition law

P IntoS (sbox g n Xxs)

sbox (p Into g) n Xs

* Exploiting the power

= DES S-boxes only require half NLU Input bits Key bits
tables

= What should the rest of the space be
used for?

Outputs

= Usually, table filled out with
duplication

= Instead, pre-compute xor with key |
material ietlne

i Summary

= Formal modeling
= Family of operators for building permutations and S-boxes
= Formal semantics for the operators
= Commands for generating AIM configuration files

= Lessons
= Separation of model from display

= Power of little domain-specific languages
= Made cheap by embedding in clean host language

	Advanced Infosec Machine�Model and DSLs
	Overview of this talk
	AIM
	AIM overview
	(Simplified)�PCE Internal Structure
	OGI’s Project
	Permutation Tool
	Permutations
	List definitions
	AIM Input Permutations
	APFU definition
	“Lego Block” Permutations
	`into`
	++
	`select`
	<<<
	inverse
	pad
	Example Definitions
	“Value” of APFU1
	Displaying APFUs
	S-boxes
	Implementing S-boxes
	Modeling S-boxes
	Operators
	Example definitions
	Introducing a little abstraction
	Packing the table
	Generating AIM configurations
	Laws
	Exploiting the power
	Summary

