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Machine Learning Is Ubiquitous

• Cancer diagnosis
• Predicting weather
• Self-driving cars
• Surveillance and 

access-control
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What Do You See?

Lion 
(p=0.99)

Race car 
(p=0.74)

Traffic light 
(p=0.99)

Deep Neural Network*
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… …
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𝑝ሺ𝑐ଶሻ
𝑝ሺ𝑐ଷሻ

𝑝ሺ𝑐ேሻ

*CNN-F, proposed by Chatfield et al., “Return of the Devil”, BMVC ‘14 4



What Do You See Now?
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…

… …

𝑝ሺ𝑐ଵሻ
𝑝ሺ𝑐ଶሻ
𝑝ሺ𝑐ଷሻ

𝑝ሺ𝑐ேሻ

DNN (same as before)

Pelican 
(p=0.85)

Speedboat
(p=0.92)

Jeans
(p=0.89)

*The attacks generated following the method proposed by Szegedy et al. 5



The Difference
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Is This an Attack?
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• What is the attack scenario?
• Does scenario have constraints?

• On how attacker can manipulate input?
• On what the changed input can look like?

Can an Attacker Fool ML Classifiers?

Defender / beholder doesn’t notice attack
(to be measured by user study)
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Can change 
physical objects, 
in a limited way

Can’t control 
camera position, 

lighting

Fooling face recognition (e.g., for surveillance, access control)

[Sharif, Bhagavatula, Bauer, Reiter 
CCS’16,arXiv’17]



Attempt #1

0. Start with Szegedy et al.’s attack
1. Restrict modification to eyeglasses
2. Smooth pixel transitions 
3. Restrict to printable colors
4. Add robustness to pose
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“Inconspicuousness”

Physical realizability



Attempt #1

0. Start with Szegedy et al.’s attack
1. Restrict modification to eyeglasses
2. Smooth pixel transitions 
3. Restrict to printable colors
4. Add robustness to pose
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“Inconspicuousness”

Physical realizability

Terence StampVicky McClure



Time to Test!

Procedure:
1. Collect images of attacker
2. Choose random target
3. Generate and print eyeglasses
4. Collect images of attacker wearing eyeglasses
5. Classify collected images

Success metric: fraction of images misclassified as target
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Physically Realized Impersonation Attacks Work

17

Lujo John Malkovich

100% success



100% success

Mahmood Carson Daly

Physically Realized Impersonation Attacks Work
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• What is the attack scenario?
• Does scenario have constraints?

• On how attacker can manipulate input?
• On what the changed input can look like?

Can an Attacker Fool ML Classifiers? (Attempt #1)

Defender / beholder doesn’t notice attack
(to be measured by user study)
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Can change 
physical objects, 
in a limited way

Can’t control 
camera position, 

lighting

Fooling face recognition (e.g., for surveillance, access control)



Attempt #2

Goal:  Capture hard-to-formalize constraints, i.e., 
“inconspicuousness”

Approach: Encode constraints using a neural network
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Step #1: Generate Realistic Eyeglasses
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Discriminator

real / fake

Real 
eyeglasses
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Step #2: Generate Realistic   Eyeglasses
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Generator
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Face recognizer

Russell Crowe / 
Owen Wilson /
Lujo Bauer / 
…
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Step #2: Generate Realistic   Eyeglasses
Adversarial



Ariel
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Are Adversarial Eyeglasses Inconspicuous?

real / fake
real / fake
real / fake
…

…
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Are Adversarial Eyeglasses Inconspicuous?

Real
Adversarial
(realized)

Adversarial
(digital)

Most realistic 10% 
of physically realized eyeglasses 

are more realistic 
than average real eyeglasses
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• What is the attack scenario?
• Does scenario have constraints?

• On how attacker can manipulate input?
• On what the changed input can look like?

Can an Attacker Fool ML Classifiers? (Attempt #2)

Defender / beholder doesn’t notice attack
(to be measured by user study)
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Can change 
physical objects 
in a limited way

Can’t control 
camera position, 

lighting

Fooling face recognition (e.g., for surveillance, access control)



Considering Camera Position, Lighting

• Used algorithm to measure pose (pitch, roll, yaw)
• Mixed-effects logistic regression

• Each 1° of pitch = 0.94x (VGG) or 1.12x (OpenFace) attack success rate
• Each 1° of yaw = 0.94x attack success rate

• Varied luminance (add 150W incandescent light at 45°, 
5 luminance levels)
• Not included in training → 50% degradation in attack success
• Included in training → no degradation in attack success
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What if Defenses Are in Place?

• Already: 
• Augmentation to make face recognition more robust to eyeglasses

• New:
• Train attack detector (Metzen et al. 2017)

• 100% recall and 100% precision
• Attack must fool original DNN and detector

• Result (digital environment): attack success unchanged 
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• What is the attack scenario?
• Does scenario have constraints?

• On how attacker can manipulate input?
• On what the changed input can look like?

Can an Attacker Fool ML Classifiers? (Attempt #2)

Defender / beholder doesn’t notice attack
(to be measured by user study)
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Can change 
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in a limited way

Can’t control 
camera position, 

lighting
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Other Attack Scenarios?

Dodging: One pair of eyeglasses, many attackers?

Change to training process:
Train with multiple images of one user 
→ train with multiple images of many users

Create multiple eyeglasses, test with large population
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Other Attack Scenarios?

Dodging: One pair of eyeglasses, many attackers?
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# of subjects trained on

# of eyeglasses 
used for dodging
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1 pair of eyeglasses, 
50+% of population 
avoids recognition

5 pairs of eyeglasses, 
85+% of population 
avoids recognition



Other Attack   Scenarios?

Privacy protection?
• E.g., against mass surveillance at a political protest

Unhappy speculation: probably not
• 90% of video frames successfully misclassified

→ 100% success at defeating laptop face logon
→ 0% at avoiding being recognized at a political protest

Exception: “privacy” through denial of service
• To preserve privacy, be “identified” in many locations at once
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Fooling ML Classifiers: Summary and Takeaways

• “Attacks” may not be meaningful until we fix context
• E.g., for face recognition:

• Attacker: physically realized (i.e., constrained) attack
• Defender / observer: attack isn’t noticed as such

• Even in a practical (constrained) context, real attacks exist
• Relatively robust, inconspicuous; high success rates

• Hard-to-formalize constraints can be captured by a DNN
• Similar principles about constrained context apply to other 

domains: e.g., malware, spam detection
For more: www.ece.cmu.edu/~lbauer/proj/advml.php
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Comparing Hypothetical and 
Realistic Privacy Valuations

Joshua Tan, Mahmood Sharif, Sruti Bhagavatula, Matthias Beckerle, 
Michelle L. Mazurek*, Lujo Bauer

*



Why measure privacy preferences?

• Privacy preferences = willingness/comfort sharing personal 
info

• Who benefits from understanding privacy preferences?
• System designers

• What data are users okay sharing?
• How much value should users receive for sharing?

• Policy makers
• How much “loss” do consumers incur through data breaches?
• What kind of data sharing (if any) should be disincentivized?

36



Measuring privacy preferences is challenging

• Contextual factors influence users’ privacy preferences and 
behaviors
• E.g., willingness to share PII depends on how it will be used

• Valuations of goods (estimations of worth) influenced by framing 
effects and cognitive biases
• Endowment effect = value more if own / value less if shared
• Hypothetical bias = overestimate value in hypothetical scenario

• Stated privacy attitudes often do not align with actual behavior 
(privacy paradox)

• In this talk, privacy preferences are measured in $ valuations
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This talk: Can we predict privacy valuations?

• Privacy valuation = willingness to sell and selling price for personal info
• How do privacy valuations depend on combinations of factors?

38

Scenario realismAttribute type Receiving party

• Does hypothetical bias explain the privacy paradox?



Methodology

• Online study with 434 Prolific participants
• Participants asked to assign selling prices to personal 

attributes
• Could also choose to not sell 
• Selling scenario was information marketplace operated by CMU
• Attributes in market are sold to buyers via an auction
• Buyers have limited budgets and purchase lowest-priced offers 

first
• Collected demographics and IUIPC scores
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Prices assigned to 7 attributes and 6 parties
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For how much do you agree 
to sell your [attribute] to each 
one of the following parties?

Receiving parties:
• Ad networks
• Federal agencies
• Insurance companies
• Market research companies
• Political parties
• Research pools

Choice

Sell Do not sell $ amount

Attributes:
• Age
• Email address
• Gender
• Relationship status
• Home address
• Occupation
• Phone number



We varied the realism of the scenario
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More realistic

Less realistic

Least realistic (HypHigh)
Participate in research on buying/selling preferences

Even less realistic (HypMedium)
Evaluate market concept

Less realistic (HypLow)
Evaluate near-operational market

Realistic without endowment (RealNoEnd)
Google SSO after valuations

Realistic with endowment (RealEnd)
Google SSO before valuations (functional market)



Marketplace realistic except for payment
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Other 
info 

needed?

Distraction 
task

Collect users’ 
selling prices

Pay user for 
attributes

Contact user 
and collect

Yes

No

Real 
market?

Marketplace 
offer

Yes

No Study debrief



Valuations analyzed using regressions and ML

• Likelihood of selling
• Mixed-effect logistic regression

• Dollar values
• Mixed-effect linear regression

• Modeled two-way interactions between scenario realism, 
attribute type, and receiving party
• Applied Holm-Bonferonni correction to significance tests

• Predictions of attribute rankings
• Machine learning classifier
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Comparing privacy valuations: 
Results
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% that 
sold

$ sold
for
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Contact info sold for more $ and less often

% that 
sold

$ sold
for
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Selling price depends on who is buying
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Can we predict valuations?

• Dollar values? Not yet.
• Scenario realism, attribute type, and receiving party 

insufficient for accurate prediction of absolute valuations
• Conditional R2 = 74.8%
• Marginal R2 = 13.3%

• Individual users have very different baselines in terms of $
• Given baseline, accurate $ prediction possible
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Can we predict valuations?

• Attribute rankings? Yes.
• Same average rankings regardless of scenario realism or buyer

• Subset of attribute rankings for hypothetical scenario further 
improves prediction of full rankings in realistic scenario
• E.g., by asking a user to rank three attributes, can predict full 

rankings more accurately than if used average rankings
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Privacy paradox often doesn’t hold
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• Surprisingly, Hypothetical values not generally different than 
Realistic values
• Exceptions:

• Phone number (RealEnd: ~$9, RealNoEndow: ~$14)
• Home address (RealEnd:  ~$8, RealNoEndow: ~$11) 

• Calibration factor = Hypothetical / Real
• Largest calibration factor predicted by our model was 1.61
• List and Gallet (2001): 4.44 for public goods, 8.41 for private goods

• No significant differences in likelihood of selling by scenario 
realism



Comparing privacy valuations: Takeaways

• Attribute rankings stable regardless of scenario realism and 
receiving party

• Selling prices can be accurately predicted based on attribute 
type and receiving party, given baseline price for individual 
person

• In contrast to other types of goods, privacy valuations not 
generally affected by hypothetical bias
• Some attribute types (e.g., contact info) may not be exempt

• Privacy paradox not attributable to hypothetical bias
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