
Affix: Binary Model Generation for Static Analysis
 Correct Computation Michael Hicks mwh@correctcomputation.com

(1) Taint Spec Generation

First, we generate BAP taint
specifications that determine
which values should be marked
as sources and sinks of taint at
runtime.

For example, to track the memory
behavior of an API function (in
*.h) we observe (a) which of its
arguments may flow to free and
(b) calls to malloc which are
returned.

To achieve (a) we mark
arguments as taint sources, and
free as the taint sink. To achieve
(b) we mark the return value of
malloc as the taint source and
function arguments / return value
as taint sinks. 

Affix

Application (*.c)

Library (*.a)

API (*.h)
BAP (Primus,

micro-
execution)

Flow specModel
Generation

Analyzer (Infer)
Model (*.c)

ERROR

Static analysis tools, such as Facebook’s Infer
[1], require the source program. Developers often
do not have access to the source code of the
libraries on which their application depends, e.g.,
a shared library (*.so) distributed through a
package manager. Affix is a tool for generating
models (C source code) of binary libraries.
Developers may use the models generated by
Affix in their static analysis, thereby improving
precision and accuracy.

Ongoing Work

We have successfully generated
models for the bi-abduction and
Quandary checkers for the Infer
static analyzer.

We are currently scaling up our
approach to support more
features (nested pointers, structs,
global variables).

We have tested our approach
against modest libraries in open
source C programs such as
sqlite and wget.

References
[1] Infer static analyzer. Retrieved April 26, 2019, from https://fbinfer.com/
[2] Binary Analysis Platform. GitHub, 22 Apr. 2019, github.com/BinaryAnalysisPlatform/bap.

Taint Spec
Generation

#include "lib.h"
int main(int argc, char *argv[]) {

int *csort = *make(10);
int r, err;
for (int i = 0; i < 100; i++) {
 r = rand () % 10 + 1;
 err = add(csort, 10, r);
 if (err) { return err; };
}
destroy(csort);
return 0;

}

app.c
int *make(int lim) {
 return calloc(lim, sizeof(int));
}

int add(int *csort, int lim, int num) {
 int num_ok = 0 <= num && num < lim;
 if (!num_ok) { return 1; }
 csort[num] += 1;
 return 0;
}

void destroy(int *csort)
{ free(csort); }

lib.c

(2) BAP Taint Analysis

The Binary Analysis Platform
(BAP) [2] has a micro execution
framework called Primus. We
leverage the dynamic taint analysis
plugin for Primus to identify flows
from taint sources to taint sinks (as
specified in (1)). These flows are
represented as source, sink pairs.

BAP will lift the library binary (*.o /
*.so) into its own IR. The Primus
micro execution framework then
interprets this IR beginning
execution at the entry point for
each API call (i.e. there is no
harness required). Furthermore,
Primus will execute branching
instructions nondeterministically,
allowing analysis of multiple paths
through the function.

(3) Model Generation

For each data-flow fact that Affix
receives from (2), it will
synthesize a C statement that
emulates the data-flow.

For example, in the example
below we receive the data-flow
facts: 
 
[malloc] return -> [make] return
[destroy] csort -> [free] ptr

and generate the model lib-
model.c below.

The add function exhibits no
memory behavior, so we
synthesize an arbitrary integer
return value.

int *make(int lim)
{ return malloc(0); }

int add(…)
{ return rand (); }

void destroy(int *csort)
{ free(csort); }

lib-model.c

lib.o

app.c:7:
error:
MEMORY_LEAK

app.c:7: error:
MEMORY_LEAKgcc -c

False Negative
(lib.o)
Infer ignores the effects
of calls into a binary
library. It fails to find the
memory leak in app.c.

True Positive (lib-model.c)
The model generated by Affix makes
the library’s memory behavior evident,
enabling Infer to find the memory leak
in app.c.

