
A DOMAIN-SPECIFIC
LANGUAGE FOR
REACTIVE CONTROL
PROTOCOLS
OF AIRCRAFT ELECTRIC
POWER SYSTEMS

Huan Xu | University of Maryland, College Park
Necmiye Ozay, Ufuk Topcu, Robert Rogersten, Richard M. Murray

May 8, 2014
HCSS Annapolis, MD

APPLICATION

2

•  Deployable autonomous fleet
•  Pilot sets high-level mission
•  Goals automatically assigned
•  Changing tasks, real-time coordination
•  Account for environment/adversary

OBJECTIVES
How do we…
… design interconnected
subsystems/agents working
to achieve a common goal

… specify complex temporal
tasks in a manner that
allows rigorous proof of
correctness

… synthesize a correct-by-
construction control
protocol that satisfies the
specifications
 3

Practical Impacts
•  Design for certification/

verification

•  Problems discovered early
•  Less costly to fix
•  Faster development
•  Easier integration

OUTLINE
•  Application
•  Objectives/Benefits
•  Aircraft Electric Power System

•  Problems
•  Reactive Control Synthesis

•  Domain-Specific Language
•  Everything goes “under the hood”

•  Limitations
•  Future Directions

4

AIRCRAFT
ELECTRIC
POWER SYSTEM

5

FUEL SYSTEM

POWER GENERATION SYSTEM

ENVIRONMENTAL CTRL SYSTEM

Hydraulic, Pneumatic,
Electric
Fault-tolerant, reliable,
autonomous
Systematic methods for
design based

•  formal specifications
•  verification and

validation of complex
systems

Increasing complexity
•  VMS systems designed

for verification
•  Need structure to allow

verification tools to be
applied

•  Synthesizing “correct-
by-construction” design
protocols

Boeing 767 Electric Power Distribution

APU

HVAC Bus 2 HVAC Bus 3

ENGINE 2

HVAC Bus 4

ENGINE 1

HVAC Bus 1

LVAC bus 1

230/115
Xfmr

230/115
Xfmr

LVAC bus 2

GND SRV GND HNDL

LL

LL

LL

AC ESS bus 1 AC Ess bus 2

LL

LVRU 2LVRU 1

LVDC ESS bus 1 LVDC Ess bus 2

LL

LVRU 4LVRU 3

LVDC Main bus 1 LVDC Main bus 2

LL LsLs

Ls Ls

Ls Ls

LsLs

Ls Ls

Start Bus 1

HVRU 1 HVRU 2

HVDC Bus 1

HVRU 3

HVRU 4

HVDC Bus 2

Motor
Drive

Motor
Drive

C1 B1

Motor
Drive

Motor
Drive

B2 C2

Start Bus 2

ESS
Motor
Drive

ESS
Motor
Drive

A1 A2

ESS
Motor
Drive

ESS
Motor
Drive

A4 A3

XM1 XM2

BAT2BAT1

BAT4BAT3

AIRCRAFT ELECTRIC POWER SYSTEM

6

!"#

!"#$%&'(%) !"#$%&'(%*

$%&'%$()

!"#$%&'(%+

$%&'%$(*

!"#$%&'(%,

-"#$%.'(%,

)*/0
,,1%
2345

)*/0
,,1%
2345

)*/0
,,1%
2345

)*/0
,,1%
2345

-"#$%.'(%)

678%9:" 678%!78-

++

++

++

#$%;99%.'(%, #$%;((%.'(%)

++

:<:<

-"8$%;99%.'(%, -"8$%;((%.'(%)

++

:<:<

-"8$%=>?@%.'(%, -"8$%=>?@%.'(%)

++ +,+,

+, +,

+, +,

+,+,

+, +,

9A>5A%&'(%,

:< :<

!"8$%&'(%,

:< :<

!"8$%&'(%)

-./.0(
10234

-./.0(
10234

5* 6*

-./.0(
10234

-./.0(
10234

6) 5)

9A>5A%&'(%)

$77(
-./.0(
10234

$77(
-./.0(
10234

!* !)

$77(
-./.0(
10234

$77(
-./.0(
10234

!8 !9

WHAT ARE SOME CONTROL/
LOGIC SYNTHESIS PROBLEMS?
Generation: Continuous controller
to regulate the output voltage
around a nominal value.
Distribution: Logic to reroute the
power according to flight phases or
fault conditions.
Load management: Logic to shed
unimportant loads when failures in
generation.
Fault detection: Logic to detect
faults based on sensor
measurements.
Cockpit interaction: Logic to
coordinate controllers to
accommodate pilot requests.

Figure courtesy of Rich Poisson, UTAS. Adapted from
Honeywell Patent US 7,439,634 B2

FORMAL METHODS FOR
VERIFICATION AND SYNTHESIS

7

Requirements
(on the system

behavior)

Assumptions (on
unknowns, e.g.
environment)

System

Formal
Specifications

System
Model

SYNTHESIS VERIFICATION

satisfied
(certificate)

violated
(counterexample)

controller no such
controller exists

•  Specification using
Linear Temporal Logic
(LTL)

•  Existing methods for
verification

•  Theorem Proving
•  Model Checking

•  Methods for Synthesis

•  Feasible paths
•  Finite state

automata

[Emerson and
Clarke, 1981]

[Boole]
[Shannon]
[Quine-McCluskey 1956]

•  “Temporal” refers to underlying nature of time
•  Linear
•  Branching

•  Two key operators
•  <> eventually – property satisfied at some point in future
•  [] always – property satisfied now and forever in future

•  Linear Temporal Logic (LTL)
•  Introduced in 1970s (A. Pnueli)

•  Large collection of tools for specification, design, analysis
•  Other temporal logics

•  CTL – Computation Tree Logic
•  TCTL – Timed CTL
•  MTL – Metric Temporal Logic (timed LTL)
•  TLA – temporal logic of actions (Leslie Lamport)

•  µ-calculus – “least fixed point” operator

TEMPORAL LOGIC

8

(A. Prior, 1950s)

LINEAR TEMPORAL LOGIC

9

GENERAL PROBLEM
DESCRIPTION

10

Given a system model and LTL specification ϕ,
design a controller to ensure that any system
execution will satisfy ϕ.

assume-guarantee

REACTIVE (OPEN) SYNTHESIS

11

Python Toolbox

•  GR(1), LTL specs
•  Nonlinear dynamics
•  Supports discretization

via MPT
•  Control protocol

designed using JTLV
•  Receding horizon

compatible
Past Applications of TuLiP

•  Autonomous vehicles - traffic planner (intersections and roads, with other vehicles)
•  Distributed camera networks - cooperating cameras to track people in region
•  Electric power transfer - fault-tolerant control of generator + switches + loads

TEMPORAL LOGIC PLANNING TOOLBOX
(TULIP)

12

http://tulip-control.sourceforge.net

[Wongpiromsarn, et al. HSCC2011]

PROBLEM FORMULATION

13

1. No AC bus shall be simultaneously
powered by more than one AC source.
2. The aircraft electric power system
shall provide power with the following
characteristics: 115 +/- 5 V (amplitude)
and 400 Hz (frequency) for AC loads
and 28 +/-2V for DC loads.
3. Buses shall be according to the
priority tables.
4.  AC buses shall not be unpowered for
more than 50ms.
5. The failure probability must be less
than 10-9 for the duration of a mission.

Given a candidate topology and text-based requirements,
build a controller that would reconfigure the system (via
closing and opening contactors) by sensing and reacting to
the faults and changes in system status in a way to ensure
that the requirements are met.

[Xu, Topcu, Murray, TCNS2014, UR]

SPECIFICATIONS

14

Graph G = (V,E)	

•  V = {v1, …, vn} (generators, buses)
•  E = {c1, …, cm} (contactors)

Adjacency Matrix Aij

Environment Variables G1-G4	

System Variables C1-C7, B1-B4	

B3! B4!

C4! C7!

C5! C6!

B1! B2!

G1!

C1! C2!

C3!

G2! G3! G4!

System Model (Live Paths)

…

'e ! 's

Environment Assumption 'e ! 's

15

B3! B4!

C4! C7!

C5! C6!

B1! B2!

G1!

C1! C2!

C3!

G2! G3! G4!

No paralleling AC sources

Disconnect unhealthy generators

Intent

Essential buses never unpowered
for more than X time

'e ! 's

'e ! 's

'e ! 's

SPECIFICATIONS

SYNTHESIS RESULTS

16

JOURNAL OF LATEX CLASS FILES 9

�

�����������
����������
��������������
���������

�

�����������
����������
��������������
���������

�

�����������
����������
��������������
���������

�

�����������
����������
��������������
��������� �

�����������

����������
��������������
���������

�

�����������
����������
��������������
���������

����	���

����	���
����	���

����	���

����	���

����	���

Fig. 6. A portion of the resulting controller automaton for the centralized
problem. Dotted arrows represent transitions to states not depicted within
the figure. Listed within each node is a valuation of environment and
system variables. From state 1, an environment input determines whether the
automaton moves to state 2 or state 3.

states that should be attained infinitely often. Many interesting
temporal logic specifications can be expressed or easily trans-
formed into GR(1) specifications. See [6], [18] for a more
precise treatment of GR(1) synthesis and [5], [6], [18], [19]
for case studies in which GR(1) synthesis has been used for
applications including hardware synthesis, motion planning for
autonomous vehicles, and vehicle management systems.

Given a GR(1) specification, the digital design synthesis tool
implemented in JTLV (a framework for developing temporal
verification algorithm) [20] generates a finite automaton that
represents a switching strategy for the system. The temporal
logic planning (TuLiP) toolbox, a collection of python-based
code for automatic synthesis of correct-by-construction em-
bedded control software provides an interface to JTLV [21].
For examples discussed in this paper, we use TuLiP.

Additional two-player temporal logic game solvers include
Anzu [22], Lily [23], Acacia [24], and Unbeast [25]. Anzu
implements a GR(1) game solver symbolically. Lily accepts
arbitrary LTL specifications and partially alleviates the re-
sulting high computational cost through optimizations of the
intermediate steps in the implementation [26]. Acacia and Un-
beast focus on the concept of bounded synthesis from [27] and
[28], respectively. See [29] for a detailed comparison of these
tools. Finally, the temporal logic specifications discussed in
Section VI are safety formulas. Therefore, it may be possible
to obtain performance improvements by exploring solvers that
are optimized to fragments (potentially more restrictive than
GR(1)) of LTL, e.g., see [30]. The use of less restrictive
LTL fragments is not explored in this paper, but is subject
to ongoing work.

C. Distributed Synthesis

The control protocols discussed in Section V-B are central-
ized in the sense that the controller has access to measurements
of all controlled and environment variables, and is able to
determine the evolution of all controlled variables in order to
satisfy a set of specifications. As discussed earlier, control ar-
chitectures for electric power systems on more-electric aircraft
will have distributed structures. We now detail a few reasons
for migrating to distributed control architectures.

Hardware challenges: A centralized controller onboard an
aircraft requires wiring from a central processing unit to all
components. The total length of wire can significantly increase
the weight of the aircraft. Local controllers allows for shorter
wires and increased efficiency due to this reduction in weight.

Increased resilience to failure: By distributing the imple-
mentation of the controller, the electric power system can be
more robust to failures, i.e., if one portion of the electric power
system malfunctions, the other sections are unaffected and can
still be fully operational.

Reduction of computational complexity: With an increased
number of electric components, the combination of configu-
rations the controller must account for quickly becomes in-
tractable for current verification and synthesis tools as well as
testing. A distributed controller design correctly decomposes
the design task into smaller subproblems each of which may
be easier to cope with.

Advantages from the distribution of the control design come
with increased importance of reasoning about the interfaces
between the controlled subsystems. There is relatively exten-
sive literature on compositional reasoning [24], [31], [32].
Here, we follow the exposition in our recent work [12].
Figure 7 illustrates the decomposition of global specifications
into local specifications. For ease of presentation, consider
the case where the system SYS is decomposed into two
subsystems SYS1 and SYS2. For i = 1, 2, let Ei and Pi be
the environment variables and controlled variables for SYSi
such that P1 ∪ P2 = P and P1 ∩ P2 = ∅. Let ϕe1 and ϕe2 be
LTL formulas containing variables in E1 and E2, respectively.
Similarly, let ϕs1 and ϕs2 be LTL formulas in terms of E1∪P1

and E2 ∪ P2, respectively. If the following conditions hold
1) any execution of the environment that satisfies ϕe also

satisfies (ϕe1 ∧ ϕe2),
2) any execution of the system that satisfies (ϕs1 ∧ ϕs2)

also satisfies ϕs, and
3) there exist two control protocols that realize the local

specifications (ϕe1 → ϕs1) and (ϕe2 → ϕs2),
then, by a result in [12], implementing these two control pro-
tocols together leads to a system where the global specification
ϕe → ϕs is met.

Two factors should be taken into account when choosing
local environment and controlled variables E1, E2, P1, and P2

and the local specifications. The first is the size of the state
space involved in the local synthesis problems. If the possible
valuations of variables involved in local specifications are
substantially less than the possible valuations of the variables
in the global specification, then distributed synthesis would
be computationally more efficient than the centralized one

automaton ~200
states !"#$%$!"#$&$!"#$'$!"#$($

)*+,$

-%$

)./"$ 0./"$ 0*+,$

-&$

-'$ -($ -1$

-2$ -3$

!"#$%!&'

()!"#$%!&'

!"#$%!&'

()!"#$%!&'

!"#$%!&'

()!"#$%!&'

!"#$%!&'

()!"#$%!&'

*$+,"-'

+.")'
*$+,"-'

+.")'

*$+,"-'

+.")'

*$+,"-'

+.")'

*$+,"-/012!%'

+.")'

*$+,"-/$"3'

*$+,"-/012!%'

+.")'

*$+,"-/$"3'

*$+,"-/012!%'

+.")'

*$+,"-/$"3'

.+4"0"-'

().+4"0"-'

.+4"0"-'

().+4"0"-'

.+4"0"-'

().+4"0"-'

.+4"0"-'

().+4"0"-'

5' 6' 7' 8' 9' :' 5' 6' 7' 8' 9' :' 5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :' 5' 6' 7' 8' 9' :' 5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

045$%$

045$&$

045$'$

045$($

For one simulation trace…

Formal Spec in LTL

'e ! 's

DOMAIN-SPECIFIC
LANGUAGES

•  Text-based specifications are ambiguous
•  Formal languages

•  Difficult to learn
•  Tedious to write

17

General Purpose Language
•  C
•  Java
•  Python
•  UML

Domain-Specific Language
•  HTML
•  GraphViz
•  Mathematica
•  SQL

CPS
[An et al. 2011]
[Bhave et al. 2011]

PRIMITIVES
•  Single-line diagrams and synthesis tools don’t “speak”

the same language
•  Idea: Use primitives to represent requirements

18

<contactor>!
 <failure>!
 1e-3!
 </failure>!
 <opentime>!
 15!
 </opentime>!
 <closetime>!
 20!
 </closetime>!
</contactor>!

env(10-9,Ge,Re)	

noparallel(Gp)	

essbus(Be)	

disconnect(Gd,Rd)	

buspower(BDC)	

	

http://tulip-control.sourceforge.net
AES2specgen

#⇥ signifies at the next time instant ⇥ is true. To specify
a property occurring at some point in the future, multiple
next operators can be used, such that #k⇥ , # # · · · # ⇥
asserts that property ⇥ holds k time instants in the future.
To avoid the use of multiple next operators, which TuLiP
cannot interpret, the time specifications in the electric power
system uses a clock variable to define an equivalent property.

For each non-essential bus b ⇤ Bs, we introduce a unique
counter tk. We discretize each time step to take � time. If a
bus is unpowered, at the next step the counter will increment
by �. Counters are also bounded by a set maximum time
limit. If the bus is powered, at the next step the counter
will reset to 0. These specifications are output as

guarantees = ⇤((bk = 0) ⇥ (#(tk) = tk + 1)),

guarantees = ⇤((bk = 1) ⇥ (#(tk) = 0)),

for all bk ⇤ Bs. Then, we limit the number of “ticks” tk can
increment to T

� steps. This specification is output as

guarantees = ⇤(tk � T
�
).

The final set of specifications involve removing unhealthy
components from the overall system. To disconnect an un-
healthy generator or rectifier unit, we use an implication.
For all environment variables pi, for i ⇤ {1, . . . , ne}, if any
component becomes unhealthy then the contactor connect-
ing pi to an adjacent component must open. This is written
as guarantees = ⇤((pi = 0) ⇥ (⌅j�Ni(cij) = 0)), where
Ni denotes the set of vertices adjacent to vertex i.

These specifications are input into TuLiP, which interfaces
with a digital design synthesis tool implemented in JTLV
[10]. If the specification is realizable, TuLiP outputs a finite-
state automaton that represents the control protocol. Figure
6 shows a portion of a sample automaton.

State 0 with rank 0 -> <g0:1, g1:1, ru4:1, ru5:1, c23:0,
c24:1, c67:0, b6:1, c13:1, b7:1, b2:1, b3:1, c35:1, c02:1>!

!With successors : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16!
State 1 with rank 0 -> <g0:0, g1:1, ru4:0, ru5:1, c23:0,
c24:0, c67:1, b6:1, c13:1, b7:1, b2:0, b3:1, c35:1, c02:0>!

!With successors : 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32!
State 2 with rank 0 -> <g0:0, g1:1, ru4:1, ru5:0, c23:1,
c24:1, c67:1, b6:1, c13:1, b7:1, b2:1, b3:1, c35:0, c02:0>!

!With successors : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16!
State 3 with rank 0 -> <g0:0, g1:1, ru4:1, ru5:1, c23:0,
c24:0, c67:1, b6:1, c13:1, b7:1, b2:0, b3:1, c35:1, c02:0>!

!With successors : 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32!

(= b5 true)!
(= b6 true)!
(= b7 true)!
(= b8 true)!
…!
(= g0 true)!
(= c05 false)!
(= g1 true)!
(= c16 false)!

Figure 6: A sample finite-state automaton output
from TuLiP that represents a control protocol.

4. RESULTS AND DISCUSSION
In this section we discuss some results for several electric

power system topologies using both Yices and TuLiP. For
ease of comparison, consider the base topology shown in
Figure 7 that includes both AC and DC components. Each
vertical set of components (generator, DC bus, rectifier unit,
AC bus, and two contactors) form a base unit. Units may
be connected together by contactors located between AC
and DC buses. We examine the results for topologies with
varying numbers of units.

gen!

ac bus!

ru!

dc bus!

ac bus!

ru!

dc bus!

gen!

Figure 7: The base topology used to discuss the
domain-specific language and conversion tool. Each
base unit consists of a generator, DC bus, recti-
fier unit, and AC bus. Units are connected to each
other by contactors between buses. More units are
connected on the right (represented by the dotted
wire/line.)

Table 1 lists the amount of time our tool takes to con-
vert a set of primitives for a given base topology into formal
specifications. Columns 2 and 3 show the size of the begin-
ning graph, while column 4 compares the di�erence in times
between converting specifications into a Yices or TuLiP-
compatible format. The di�erence in conversion times is
insignificant for smaller sized graphs. The Yices conversion
takes more time due to the increase of allowable environment
configurations. Because we solve a series of static problems,
the tool must write a set of specifications for each of the envi-
ronment scenarios. One thing to note is that the topologies
we explore have many symmetries in the graph. Therefore,
not all environment conditions need to be enumerated, e.g.,
an engine failure on the left side can be treated as similar to
an engine failure on the right side.
Given the set of automatically generated specifications,

Table 2 compares the time it takes for Yices and TuLiP to
solve/synthesize a controller for a given topology. Column 2
lists the total number of environment configurations, i.e., the
number of static problems Yices must solve. Then, Column
3 shows the time for Yices to solve a single environment con-
figuration, as well as the time it takes for TuLiP to solve the
full synthesis problem. Columns 3 and 4 show that solving
a series of satisfiability problems is much time and memory
e⇥cient than using a synthesis tool. Increasing the topology
from four to five base units dramatically increases the com-
putation time. In addition, we applied the conversion tool
to the single-line diagram topology from Figure 2. While the
number of environment configurations is large, generation of
all other primitives requires only 10 seconds. For one envi-
ronment configuration, Yices takes 0.9 seconds and 39MB
of memory to solve. This shows that the use of our conver-
sion tool can be applicable to industrial-sized problems for
untimed problems.
The size of the Yices controllers is the number of di�erent

[Xu, Ozay, Murray INCOSE in prep]

APPROACH
1. Input: Topology 2. Input: Primitives 3. Output: Controller

!"#"$%&%

'%(%)"*%+#,-"%(%.+*%/'%(%&%

!"#"$%0%

!"#"$%1%

!"#"$%2&%

!"#"$%22%

!"#"$%3%

!"#"$%4%

!"#"$%5%

!"#"$%26%

!"#"$%6%

!"#"$%7%

!"#"$%8%

!"#"$%23%

!"#"$%2%

'%(%)"*%+#,-"%(%.+*%/'%(%2%

'%(%#"*%+#,-"%(%.+*%/'%(%6% '%(%#"*%+#,-"%(%.+*%/'%(%2% '%(%#"*%+#,-"%(%.+*%/'%(%&%

'%(%#"*%+#,-"%(%+*%/'%(%3% '%(%)"*%+#,-"%(%+*%/'%(%&% '%(%)"*%+#,-"%(%+*%/'%(%#%

'%(%#"*%+#,-"%(%+*%/'%(%6% '%(%#"*%+#,-"%(%#+*%/'%(%2% '%(%#"*%+#,-"%(%#+*%/'%(%&%

'%(%)"*%+#,-"%(%+*%/'%(%6% '%(%)"*%+#,-"%(%.+*%/'%(%3% '%(%)"*%+#,-"%(%.+*%/'%(%6%

Interfaces with SAT solver and TuLiP Interfaces to Simulink

19

Bus

L

Abstract+model
single'line(diagram

TuLiP
synthesisBus

L

global(state;(
while(1(
(((([gen1,(gen2](=(readboard();
(((([c1,(c2,(c3](=(mscript(gen1,(gen2);((
((((writeboard(c1,(c2,(c3);
end(while

Automaton
(((((((((State(0(<gen1:1,(gen2:1,(c1:1,(c2:1,(c3:0>

With(successors:(1,(2,(3,(0
(((((((((State(1(<gen1:0,(gen2:0,(c1:0,(c2:0,(c3:0>(

With(no(successors
(((((((((State(2(<gen1:0,(gen2:1,(c1:1,(c2:0,(c3:1>(

With(successors:(1,(2,(3,(0
(((((((((State(3(<gen1:1,(gen2:0,(c1:0,(c2:1,(c3:1>

With(successors:(1,(2,(3,(0

Formal+Specification
linear(temporal(logic(

)0()1()1(
)1()1(

�����
���

A CRL

RL

CGG
BB

Control+software
function([c1,(c2,(c3](=(mscript(gen1,(gen2)(
global(state;
switch((state)
case(0:
((((((((if(gen1==0andgen2==0(
((((((((((((((((state(=(0;(c1(=(0;(c2(=(0;(c3(=(0;
((((((((end(if
((((((((if(gen1==0andgen2==1
((((((((((((((((state(=(1;(c1(=(1;(c2(=(0;(c3(=(1;
((((((((end(if
((((((((...(
case(1:(
((((((((�
end(switch

HARDWARE TESTBED

20

[Rogersten, Xu, Ozay, Topcu, Murray JAIS2014]

21

2/15/13

!"#!$%&%'(#)*+&,%$&#-./+%#0$1,%$234."#
5+1,2+6#7.%#8+'&49+#:.",%.*#-%.,.&.*1!
"#$%&'!"#(%&)'%*+!,%-./0%!1230+!453*!65+!7859!:#;-5+!

"/-<3&=!>?!>5&&30+!@3A'%-<!

BCDB?CCE!

DSC, 6.1.6.1

PUB ID: 434

!"#$%&$'(

)*+$%,$%'(-%"*'./%0$%'(1$2"3(4/"%5(1$678$%(
9*&,'(

:;<2/"5'(

=;<2/"5'(

;<5=>!5=<?@#
! !>#=%&*!3/&-&3F!/*-&%3)/*(A0!&%A/%)!#*!%A%-'&/-!;#G%&?!
! !@#.;A%H/'0!3*=!)38%'0I-&/J-3A/'0!#8!3/&-&3F!%A%-'&/-!;#G%&!)0)'%.)!
<3K%!&3.;%=!5;?!
A)B#<CD)8>!5=<?D@#
• #L%)/(*/*(!)5-<!)0)'%.)!/)!(%M*(!.#&%!-<3AA%*(/*(NNN!
• !O5'#.3J-!)0*'<%)/)!#8!-#*'&#A!)#FG3&%!-3*!%A/./*3'%!;#'%*J3A!$5()+!
&%=5-%!'<%!=%)/(*+!/.;A%.%*'3J#*+!K%&/P-3J#*!3*=!'%)J*(!J.%!!
E<!F@#
! !:#!$5/A=!3*!%H;%&/.%*'3A!<3&=G3&%!'%)'$%=!'<3'!-3;'5&%)!)#.%!#8!'<%!
9%0!%A%.%*')!#8!3/&-&3F!QRS!/*!3!)/.;A/P%=!)%M*(!7.%#

• !K3A/=3J*(!'<%#&%J-3A!3=K3*-%)!/*!-#&&%-'I$0I-#*)'&5-J#*!
-#*'&#AA%&!)0*'<%)/)T!
• !)'5=0/*(!/.;A%.%*'3J#*!-<3AA%*(%)!U%?(?+!J./*(+!5*-%&'3/*'0VT!
• !/*K%)J(3J*(!;#'%*J3A!(3;)!$%'G%%*!3$)'&3-'!.#=%A)W
3))5.;J#*)!5)%=!/*!)0*'<%)/)!3*=!3!&%3A!)0)'%.?!

G'%6/'%+#=HI*+H+",'4."#

5H"J#:K'%'&,+%$L'4."#5+1,#8+13*,1#

!21,%'&,#;.6+*#
S/*(A%!X/*%!L/3(&3.!

M#
N.%H'*#DI+&$O&'4."1#

X/*%3&!:%.;#&3A!X#(/-!

Q))%*J3A!Y5))%)Z!

,#!;3&3AA%A/*(!O@!)#5&-%)Z!

⇤{(BDCL = 1) � (BDCR = 1)}

⇤{((GL = 1) ⇥ (GR = 1))� (CACm = 0)}

53F$-@!O!R0'<#*I$3)%=!'##A$#H!8#&!35'#.3J-!
)0*'<%)/)!#8!-#&&%-'I$0I-#*)'&5-J#*!%.$%==%=!
-#*'&#A!)#FG3&%?!
• !OK3/A3$A%![!<\;ZWW'5A/;I-#*'&#A?)8?*%'!

!
"

"
!

#

$

%&"'(')*+

,&"'(')*+

-

.

/

$

0

-

.

#

1

2

D)?D=?E#

5<-<F<EB#

0+,'$*+6#;.6+*#

:<?58<F#D<N5P!8)#

S%*)#&0!/*;5')Z!
)0)'%.!)'3'5)+!835A')!

@#*'&#A!-#..3*=)Z!
)G/'-<!-#*P(5&3J#*!

N!QF5#=?R):5=<?S#'<(<!)G/'-<%)+!;A5()##
]35A')Z!

^%*%&3'#&+!&%-JI!
P%&!83/A5&%)!

-%.2*+H#D+,3I@#^/K%*!3*!QRS!)/*(A%IA/*%!=/3(&3.!3*=!3!
8#&.3A!);%-/P-3J#*!=%)-&/$/*(!&%_5/&%.%*')+!$5/A=!3!-#*'&#AA%&!
'<3'!G#5A=!&%-#*P(5&%!'<%!)0)'%.!U$0!'5&*/*(!#*!3*=!#`!'<%!
-#*'3-'#&)V!'#!&%3-'!'#!'<%!835A')!3*=!-<3*(%)!/*!)0)'%.!)'3'5)!
/*!3!G30!'#!%*)5&%!'<3'!'<%!);%-/P-3J#*!/)!.%'?!

0)D=E?#P<8ANF<P#

!"#$%&$'(

)*+$%,$%'(-%"*'./%0$%'(1$2"3(4/"%5(1$678$%(
9*&,'(

:;<2/"5'(

=;<2/"5'(

1.5 2 2.5 3 3.5

−30

−20

−10

0

10

20

30

Time [s]

V
o

lta
g

e
 [

V
]

!"#$%&'" ()*+,$-$."/0$1
2%+3$"/0$"4035"

6+,$-$."/0$1
7*$)"/0$"4035"

8$&)" !"# $%&$#

8&9" !%# $'&(#

8:)" !)&%# $*&+#

;"#$%&'3" ()*+,$-$."/0$1
2%+3$"/0$"4035"

6+,$-$."/0$1
7*$)"/0$"4035"

8$&)" $$*&(# $+,&)#

8&9" $+,&'# $(%&*#

8:)" $,!&*# $$*&"#

Timing characterization of the system

LIMITATIONS/SOLUTIONS

22

•  Full synthesis – double
exponential

•  GR(1) synthesis –
polynomial

•  State space – scales
exponentially with clocks

•  Solve synthesis problem
•  Untimed

•  SAT solver
•  Distributed

•  Decompose into
smaller systems

•  Counter-strategy
guided refinement

